Forgot password
 Register account
View 1657|Reply 1

[不等式] 血狼王强势回归之不等式(3)

[Copy link]

54

Threads

160

Posts

0

Reputation

Show all posts

血狼王 posted 2019-7-13 23:38 |Read mode
若有正数$x,y,z$使得$xyz=1$,求证
$$\frac{1}{1+x^2+4xy}+\frac{1}{1+y^2+4yz}+\frac{1}{1+z^2+4zx}\geq \frac{1}{2}$$
血狼王者,格罗特克斯(Grotex)是也。
AOPS的id:Grotex

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2019-7-14 12:29
令 `x=b/a`, `y=c/b`, `z=a/c`,则
\[\sum\frac1{1+x^2+4xy}=\sum\frac{a^2}{a^2+b^2+4ca}\geqslant\frac{(a+b+c)^2}{\sum(a^2+b^2+4ca)}=\frac12.\]

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:12 GMT+8

Powered by Discuz!

Processed in 0.012264 seconds, 22 queries