Forgot password?
 Register account
View 1646|Reply 1

[不等式] 血狼王强势回归之不等式(3)

[Copy link]

54

Threads

160

Posts

1234

Credits

Credits
1234

Show all posts

血狼王 Posted 2019-7-13 23:38 |Read mode
若有正数$x,y,z$使得$xyz=1$,求证
$$\frac{1}{1+x^2+4xy}+\frac{1}{1+y^2+4yz}+\frac{1}{1+z^2+4zx}\geq \frac{1}{2}$$
血狼王者,格罗特克斯(Grotex)是也。
AOPS的id:Grotex

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-7-14 12:29
令 `x=b/a`, `y=c/b`, `z=a/c`,则
\[\sum\frac1{1+x^2+4xy}=\sum\frac{a^2}{a^2+b^2+4ca}\geqslant\frac{(a+b+c)^2}{\sum(a^2+b^2+4ca)}=\frac12.\]

Mobile version|Discuz Math Forum

2025-5-31 11:12 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit