Forgot password?
 Register account
View 1644|Reply 3

[不等式] 分式不等式

[Copy link]

46

Threads

82

Posts

766

Credits

Credits
766

Show all posts

Shiki Posted 2019-7-15 22:05 |Read mode
求不去分母的sos做法
$$\sum \frac{a^3}{a^2+2b^2} \geqslant \sum \frac {a^3} {2a^2+b^2}$$
= =

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-7-15 22:36
因为
\[\frac{a^3}{a^2+2b^2}-\frac{a^3}{2a^2+b^2}-\frac29(a-b)=\frac{(5a^3+14a^2b+4ab^2+4b^3)(a-b)^2}{9(a^2+2b^2)(2a^2+b^2)}\geqslant0,\]所以
\[\sum\left( \frac{a^3}{a^2+2b^2}-\frac{a^3}{2a^2+b^2} \right)\geqslant\frac29\sum(a-b)=0.\]

46

Threads

82

Posts

766

Credits

Credits
766

Show all posts

 Author| Shiki Posted 2019-7-15 23:00
回复 2# kuing

k神强无敌.$\frac{2}{9}$的系数又怎么找呢...我只能想到减去$k(a-b)$这步

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-7-15 23:12
回复 3# Shiki

`\displaystyle\frac{a^3}{a^2+2b^2}-\frac{a^3}{2a^2+b^2}=\frac{a^3(a+b)}{(2a^2+b^2)(a^2+2b^2)}(a-b)`,上面是 2 下面是 9

Mobile version|Discuz Math Forum

2025-5-31 11:23 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit