Forgot password?
 Register account
View 1614|Reply 2

[几何] 任一点向正三角形的三条高线作垂线段则长者等于两者和

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2019-7-17 14:08 |Read mode
求证:由任一点向正三角形的三条高线作垂线段,则这三条线段中的长者必等于另两者的和.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-7-17 15:47
是平面内的是吧?那就故意用一下解析法

不妨设三条高线为 `x=0` 及 `x\pm\sqrt3y=0`,设那任意点为 `(2a,2b)`,则三线段长为 `h_1=2|a|`, `h_{2,3}=\bigl|a\pm\sqrt3b\bigr|`,由此得 `(h_2^2+h_3^2-h_1^2)^2=(6b^2-2a^2)^2=4h_2^2h_3^2`,即 `(h_1+h_2-h_3)(h_1-h_2+h_3)(-h_1+h_2+h_3)(h_1+h_2+h_3)=0`,即得证。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2019-7-17 16:27
回复 2# kuing

平面几何平面几何

Mobile version|Discuz Math Forum

2025-5-31 10:30 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit