Forgot password?
 Register account
View 1791|Reply 10

[不等式] 求教SOS证法

[Copy link]

46

Threads

82

Posts

766

Credits

Credits
766

Show all posts

Shiki Posted 2019-7-18 15:55 |Read mode
对正实数$a,b,c$,证明:
$$\sum \frac {a^2}{b^2+c^2} \geqslant \sum \frac {a}{b+c}$$
= =

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-7-18 16:13
一定要 SOS 吗?


PS、在《撸题集》P.294 题目 3.1.64 我证明过关于那个指数是递增的。

46

Threads

82

Posts

766

Credits

Credits
766

Show all posts

 Author| Shiki Posted 2019-7-18 16:48
回复 2# kuing

最近正在学习此法

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-7-18 22:01
SOS 还真是刚刚好:
\begin{align*}
\sum\left( \frac{a^2}{b^2+c^2}-\frac a{b+c} \right)&=\sum\frac{ab(a-b)+ac(a-c)}{(b^2+c^2)(b+c)}\\
&=\sum\left( \frac{ab(a-b)}{(b^2+c^2)(b+c)}+\frac{ba(b-a)}{(c^2+a^2)(c+a)} \right)\\
&=\sum\frac{ab(a-b)^2(a^2+b^2+c^2+ab+bc+ca)}{(b^2+c^2)(b+c)(c^2+a^2)(c+a)}.
\end{align*}

46

Threads

82

Posts

766

Credits

Credits
766

Show all posts

 Author| Shiki Posted 2019-7-18 22:15
回复 4# kuing

k神牛B!请问您打草稿是写$\sum$还是逐项写下来?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-7-18 22:26
没想到,这样的 SOS 同样适用于《撸题集》里的一般指数命题:
\begin{align*}
&\sum\left( \frac{a^m}{b^m+c^m}-\frac{a^n}{b^n+c^n} \right)\\
={}&\sum\frac{a^nb^n(a^{m-n}-b^{m-n})+a^nc^n(a^{m-n}-c^{m-n})}{(b^m+c^m)(b^n+c^n)}\\
={}&\sum\left( \frac{a^nb^n(a^{m-n}-b^{m-n})}{(b^m+c^m)(b^n+c^n)}+\frac{b^na^n(b^{m-n}-a^{m-n})}{(c^m+a^m)(c^n+a^n)} \right)\\
={}&\sum\frac{a^nb^n(a^{m-n}-b^{m-n})\bigl(a^{m+n}-b^{m+n}+(a^m-b^m)c^n+(a^n-b^n)c^m\bigr)}{(b^m+c^m)(b^n+c^n)(c^m+a^m)(c^n+a^n)},
\end{align*}那么,当 `m\geqslant n\geqslant 0` 时,就有 `(a^{m-n}-b^{m-n})(a^{m+n}-b^{m+n})\geqslant0`, `(a^{m-n}-b^{m-n})(a^m-b^m)\geqslant0`, `(a^{m-n}-b^{m-n})(a^n-b^n)\geqslant0`,从而上式非负,所以
\[\sum\frac{a^m}{b^m+c^m}\geqslant\sum\frac{a^n}{b^n+c^n}.\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-7-18 22:31
回复 5# Shiki

初学时还会写出来看着,后来一般都直接写 `\sum` 啊……

46

Threads

82

Posts

766

Credits

Credits
766

Show all posts

 Author| Shiki Posted 2019-7-18 22:35
回复 7# kuing

我有时全写下来也看不出有什么联系

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-7-18 22:43
回复 8# Shiki

玩熟了就好。

46

Threads

82

Posts

766

Credits

Credits
766

Show all posts

 Author| Shiki Posted 2019-7-19 10:17
回复 4# kuing

刚才突然发现鲁题集的aops链接里已给出了SOS证法0.0

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-7-19 12:37
回复 10# Shiki

好吧,我也没点链接看了,不过那里也只得个结果,没变形过程……
而且也没有一般指数的[得意]

Mobile version|Discuz Math Forum

2025-5-31 10:46 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit