Forgot password?
 Register account
View 1524|Reply 2

[数论] 存在性证明

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2019-7-24 21:13 |Read mode
QQ图片20190625095214.jpg
请问这题后面怎么证。构造后,需要证明互素。

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2019-7-26 14:35
Last edited by realnumber 2019-7-26 14:47这样算不算?
令x=2,y=3,z=5,w=p,p是奇数,p>7
则a=6+5p,b=10+3p,c=15+2p
(a,b)=(6+5p,10+3p)=(2p-4,10+3p)=(2p-4,14+p)=(32,p+14)=1
(a,c)=(p-24,15+2p)=(p-24,63),只要p-24不是3或7的倍数,也会是1
(b,c)=(p-5,15+2p)=(p-5,25)=1,p不是5的倍数
符合"p不是5的倍数"以及“p-24不是3或7的倍数”的奇数p应该很多
p-24=21t+16,则它不是3或7的倍数,p=21t+40,令t=5s+1,s为任意正整数,则p也不是5的倍数.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2019-7-26 18:23
回复 2# realnumber
至此我们合力解决了这道题(应该有很多其他的构造方法)
完整过程如下:
解:设a=xy+zw,b=xz+yw,c=yz+wx,则a+b=(x+w)(y+z),b+c=(x+y)(z+w),
c+a=(y+w)(z+x),每两项的和为x+y+z+w,下面证明存在无穷多这样的数组是互素的.
令x=2,y=3,z=5,w=p,p是奇数,p>7则a=6+5p,b=10+3p,c=15+2p,(a,b)=
(2p-4,10+3p)=(p-2,10+3p)= 1,(a,c)=(p-24,15+2p)=(p-24,63),只要p-24不是3或7的倍数,也会是1.(b,c)=(p-5,15+2p)=(p-5,25)=1,只要p不是5的倍数,也会是1.
令p=105t+1(t为任意正整数)即可.

Rate

Number of participants 1威望 +1 Collapse Reason
realnumber + 1 握手

View Rating Log

Mobile version|Discuz Math Forum

2025-5-31 11:20 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit