Forgot password?
 Register account
View 1592|Reply 2

[数论] 数字和四道

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2019-7-26 10:26 |Read mode
Last edited by hbghlyj 2019-8-7 20:21(1)设a,b是正整数,已知对任何正整数n,都有$S\left(an\right)=S\left(bn\right)$,求证:存在整数l,使得$a=10^lb$
(2)我们用$S_3(N)$表示正整数N在三进制下的各位数字之和,例如2019在三进制下为$(2202210)_3$,故
$S_3(2019)=9$,求出所有可以表示成$S_3(n^2)(n∈\mathbb{N}_+)$的正整数
(3)记正整数x的十进制表示的数码和为S(x).求所有的x,使得(4)S(x)=S(6x)=S(16x)=S(166x)=S(6²x)=S(66x)=S(6×66x)
求所有x,使得S($x^4-5x^2+13$)=9

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2019-7-26 14:17
最后一句,似乎打错了

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2019-7-26 18:34
Last edited by hbghlyj 2019-8-7 20:22回复 2# realnumber
又更新了一道证明题。(我是学生,做到类似的题就喜欢收集起来,征集解答)

Mobile version|Discuz Math Forum

2025-5-31 10:56 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit