Forgot password?
 Register account
View 2261|Reply 8

[几何] 立几:四面体欧拉不等式

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2019-7-26 10:32 |Read mode
Last edited by hbghlyj 2019-7-26 23:09设四面体外接球和内切球球心为分别为O(外接球半径为R)和I(内切球半径为r),证明:OI²≤R²-9r².
原网页R≥3r

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

hejoseph Posted 2019-7-26 16:54
不熟悉四面体的不等式,提供一个结论:
设四面体 $ABCD$ 的体积是 $V$,点 $A$、$B$、$C$、$D$ 所对的面的面积分别是 $S_A$、$S_B$、$S_C$、$S_D$,外接球 $O$ 半径是 $R$,内切球 $I$ 半径是 $r$,$AB=a$,$AC=b$,$AD=c$,$CD=a'$,$BD=b'$,$BC=c'$,则
\[
OI^2=R^2-\frac{a^2S_AS_B+b^2S_AS_C+c^2S_AS_D+a'^2S_CS_D+b'^2S_BS_D+c'^2S_BS_C}{9V^2}r^2
\]

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

hejoseph Posted 2019-7-26 17:46
你这个结论应该是错误的。

在四面体 $ABCD$ 中,$a=4$,$b=5$,$c=6$,$a'=5$,$b'=4$,$c'=3$,则
\begin{align*}
&S_A=6,S_B=12,S_C=3\sqrt 7,S_D=6,\\
&V=3\sqrt 7,R=\frac{\sqrt{2233}}{14},r=\frac{8 \sqrt{7}-7}{19},\\
&OI^2=\frac{667727-91168 \sqrt{7}}{90972}\approx 4.6884661706114343429,\\
&R^2-3Rr=\frac{6061-336 \sqrt{319}+42 \sqrt{2233}}{532}\approx 3.8431250855078237591。
\end{align*}

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2019-7-26 18:28
Last edited by 青青子衿 2021-1-10 13:35回复 2# hejoseph
这个表达式好漂亮

bbs.emath.ac.cn/forum.php?mod=viewthread&tid=16924

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2019-7-26 22:33
还以为楼主的是欧拉公式的推广,以为又开了眼界呢

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2019-7-26 23:07
回复 3# hejoseph
感谢指正。这样修正后的验证无误:
Screenshot_2019_0726_183407.png

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2019-7-26 23:23
万一还不成立,我再拉两个进来(目前验证无误):
$OI^3≤R^3-3R^2r$
$OI^2≤R^2-3\sqrt[4]{3}{R^{\frac{3}{4}}}{r^{\frac{5}{4}}}$

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

hejoseph Posted 2019-7-29 22:47
《四面体不等式》一书的第52页有 $R^2\geqslant 9r^2+OI^2$ 这个不等式的证明。

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

hejoseph Posted 2019-7-30 15:50
Last edited by hejoseph 2019-7-30 15:57直接用 $OI$ 长度的表达式和已知的不等式
\begin{align*}
&aa'bb'cc'\geqslant 72V^2\\
&S_AS_BS_CS_D\geqslant \frac{81\times 9^{1/3}}{16}\cdot V^{8/3}
\end{align*}
由平均值不等式,得
\[
a^2S_AS_B+b^2S_AS_C+c^2S_AS_D+a'^2S_CS_D+b'^2S_BS_D+c'^2S_BS_C\geqslant 6\sqrt[6]{(aa'bb'cc')^2\cdot\left(S_AS_BS_CS_D\right)^3}\geqslant 81V^2
\]

Mobile version|Discuz Math Forum

2025-5-31 10:58 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit