|
kuing
Posted 2019-7-26 23:40
还是用上次这帖的齐次菊部不等式法,而且比那个还简单些。
首先证明:当 `n\geqslant1`, `x>0` 时,恒有
\[\sqrt{\frac1{1+(n^2-1)x^{2n}}}\geqslant\frac1{1+(n-1)x^{n+1}}. \quad(*)\]
平方,分母,即证
\[1+(n^2-1)x^{2n}\leqslant\bigl(1+(n-1)x^{n+1}\bigr)^2,\]展开后约去 `(n-1)x^{n+1}` 化为
\[(n+1)x^{n-1}\leqslant2+(n-1)x^{n+1},\]然后用简单的求导法
\begin{align*}
f(x)&=2+(n-1)x^{n+1}-(n+1)x^{n-1},\\
f'(x)&=(n^2-1)x^{n-2}(x^2-1),
\end{align*}即得 `f(x)\geqslant f(1)=0`,所以式 (*) 得证。
现在,在式 (*) 中令
\[x^{2n}=\frac{a_1a_2\cdots a_n}{a_1^n},\]以及记 `m=(n+1)/(2n)`,则有
\begin{align*}
\sqrt{\frac{a_1^n}{a_1^n+(n^2-1)a_1a_2\cdots a_n}}
&\geqslant\frac1{1+(n-1)\bigl( \frac{a_1a_2\cdots a_n}{a_1^n} \bigr)^m}\\
&=\frac{(a_1^m)^{n-1}}{(a_1^m)^{n-1}+(n-1)a_2^ma_3^m\cdots a_n^m}\\
&\geqslant\frac{(a_1^m)^{n-1}}{(a_1^m)^{n-1}+(a_2^m)^{n-1}+(a_3^m)^{n-1}+\cdots+(a_n^m)^{n-1}},
\end{align*}从而
\[\sum_{k=1}^n\sqrt{\frac{a_k^n}{a_k^n+(n^2-1)a_1a_2\cdots a_n}}\geqslant1.\] |
|