Forgot password?
 Register account
View 1884|Reply 3

[几何] 正方形的内切圆

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2019-8-1 01:13 |Read mode
Last edited by hbghlyj 2019-8-1 01:35正方形ABCD内切圆于M的切线交BC,CD于P,Q(1)求证:AF∥ME
作Q关于AP中垂线的对称点Q',(2)求证:APQQ'共圆,且圆心的轨迹是以C为圆心的圆弧,两端为OB,OD中点
(3)求证:AQ,FQ'交点的轨迹是线段
AO'交PQ于I,(4)求证:I的轨迹是双曲线的一支
share.(3).jpg

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2019-8-1 01:46
(1)设正方形边长为2,$\therefore {\text{PM}} = {\text{PF}},{\text{QG}} = {\text{QM}}$,在${\text{Rt}}\vartriangle {\text{PCQ}}$中,${\text{P}}{{\text{Q}}^2} = {\text{P}}{{\text{C}}^2} + {\text{C}}{{\text{Q}}^2},\therefore {\left( {{\text{PF}} + {\text{QG}}} \right)^2} = {\left( {1 - {\text{PF}}} \right)^2} + {\left( {1 - QG} \right)^2},\therefore PF\cdot{\text{QG}} = 1 - {\text{PF}} - {\text{QG}},{\text{BP}}\cdot{\text{DQ}} = \left( {1 + {\text{PF}}} \right)\left( {1 + {\text{QG}}} \right) = 2 = {\text{BE}}\cdot{\text{AD}},\vartriangle {\text{ADQ}} \sim \vartriangle {\text{PBE}},{\text{AP}}\parallel {\text{HQ}}$

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2019-8-1 18:46
回复 1# hbghlyj


这么大的点,看着超级不习惯,闪了闪了

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2019-8-1 19:08
回复 3# isee
同问。。我粘贴到word里只有几寸,为什么到这里变这么大?

Mobile version|Discuz Math Forum

2025-5-31 11:12 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit