Forgot password?
 Register account
View 2118|Reply 6

[几何] 两点到三角形顶点的距离的不等式 等角共轭取等

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2019-8-1 15:00 |Read mode
Last edited by hbghlyj 2022-8-14 07:03(1)P,Q是平面上任意两点,求证:
$\frac{AP \cdot AQ}{AB \cdot AC}+\frac{BP \cdot BQ}{BC \cdot BA}+\frac{CP \cdot CQ}{CA \cdot CB}≥1$,当且仅当P,Q等角共轭时取等
见《平面几何中的小花》81等角共轭点
forum.php?mod=viewthread&tid=3567&highlight=惯性矩不等式
(2)P是平面上任一点,求证:
$\frac{AP \cdot AP}{AB \cdot AC}+\frac{BP \cdot BP}{BC \cdot BA}+\frac{CP \cdot CP}{CA \cdot CB}≥1$,当且仅当P为主心时取等

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-8-1 15:16
复数法咯,见《撸题集》P.120 中间

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2019-8-1 15:17
Last edited by hbghlyj 2019-8-8 22:35(1)恒等式$\sum {\frac{{\left(a-p\right)\left(a-q\right)}}{{\left(a - b\right)\left(a-c\right)}}}  = 1$
推广是Lagrange
(2)恒等式$\sum{\frac{{\left(a-p\right)^2}}{{\left(a - b\right)\left(a-c\right)}}}  = 1
即\sum {\frac{{b - c}}{{a -p}}}  = \prod {\frac{{b - c}}{{a - p}}} $
推广是广义Fibonacci
如果把(1)的分子拆开用广义Fibonacci能证明吗?

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2019-8-1 15:27
Last edited by hbghlyj 2020-2-1 12:47回复 2# kuing
题(2)就是$U_{3,2}$
问题就是如何把$U_{4,3}$推广到这种形式: IMG_20190807_091848.jpg

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2019-8-8 16:42
回复 2# kuing
复数法如何看出取等条件是等角共轭呢

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-2-1 12:41
无标题.png 用托勒密也可证

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2022-7-15 18:59

Mobile version|Discuz Math Forum

2025-5-31 11:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit