|
青青子衿
Posted 2019-8-2 12:01
Last edited by 青青子衿 2019-8-2 13:31回复 1# hbghlyj
\(\,\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\,\)
椭圆&关于椭圆中心的直角弦中点轨迹
一般方程:
\(\,\large{\left(a^2+b^2\right)\left(b^2x^2+a^2y^2\right)^2=a^2b^2\left(b^4x^2+a^4y^2\right)}\,\)
参数方程:
\begin{cases}
x=\dfrac{a\,b\cos u}{2\cdot\sqrt{b^2\cos^2u+a^2\sin^2u}}-\dfrac{a\,b\sin u}{2\cdot\sqrt{a^2\cos^2u+b^2\sin^2u}}\\
y=\dfrac{a\,b\sin u}{2\cdot\sqrt{b^2\cos^2u+a^2\sin^2u}}+\dfrac{a\,b\cos u}{2\cdot\sqrt{a^2\cos^2u+b^2\sin^2u}}
\end{cases} |
|