Forgot password?
 Register account
View 1732|Reply 3

[几何] 椭圆&等腰三角形

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2019-8-1 19:11 |Read mode
对于曲线$C_1:3(x^2+2y^2)^2=2(x^2+4y^2)$上原点以外的每一点P,求证存在过P的直线与椭圆$C_2:x^2+2y^2=2$相交于两点A,B,使△AOP与△BOP均为等腰三角形

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2019-8-2 12:01
Last edited by 青青子衿 2019-8-2 13:31回复 1# hbghlyj
\(\,\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\,\)
椭圆&关于椭圆中心的直角弦中点轨迹
一般方程:
\(\,\large{\left(a^2+b^2\right)\left(b^2x^2+a^2y^2\right)^2=a^2b^2\left(b^4x^2+a^4y^2\right)}\,\)
参数方程:
\begin{cases}
x=\dfrac{a\,b\cos u}{2\cdot\sqrt{b^2\cos^2u+a^2\sin^2u}}-\dfrac{a\,b\sin u}{2\cdot\sqrt{a^2\cos^2u+b^2\sin^2u}}\\
y=\dfrac{a\,b\sin u}{2\cdot\sqrt{b^2\cos^2u+a^2\sin^2u}}+\dfrac{a\,b\cos u}{2\cdot\sqrt{a^2\cos^2u+b^2\sin^2u}}
\end{cases}

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2019-8-2 21:39
回复 2# 青青子衿
所以可视为两组椭圆的交点的轨迹?

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2019-8-2 22:51
回复 3# hbghlyj
其实是同一个椭圆,不同的角度参数,其中角度参数相差二分之派;
然后就是这两个点的中点。

Mobile version|Discuz Math Forum

2025-5-31 10:45 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit