Forgot password?
 Register account
View 1852|Reply 1

[几何] 张直角中点轨迹

[Copy link]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-8-2 13:02 |Read mode
结论:设 `\Gamma`: `ax^2+by^2=1`,定点 `P(x_0,y_0)`,`\Gamma` 上两动点 `A`, `B` 满足 $\vv{PA}\cdot\vv{PB}=0$,则 `AB` 中点 `M` 的轨迹方程为
\[(a+b)(ax^2+by^2)^2-2ab(ax^2+by^2)(x_0x+y_0y)+a^2(bx_0^2+by_0^2-1)x^2+b^2(ax_0^2+ay_0^2-1)y^2=0.\]
推导并不难,留给大家玩

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

 Author| kuing Posted 2019-8-2 13:38
差点忘了抛物线:

结论2:设 `\Gamma_2`: `y^2=2px`,定点 `P(x_0,y_0)`,`\Gamma_2` 上两动点 `A`, `B` 满足 $\vv{PA}\cdot\vv{PB}=0$,则 `AB` 中点 `M` 的轨迹方程为
\[(y^2+p^2)(y^2-2px)+p^2(x-x_0)^2+p^2(y-y_0)^2=0.\]

Mobile version|Discuz Math Forum

2025-5-31 11:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit