Forgot password?
 Register account
View 1785|Reply 4

[几何] 椭圆关于中心的定长弦垂足轨迹

[Copy link]

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2019-8-5 11:20 |Read mode
Last edited by 青青子衿 2019-8-5 13:57椭圆\(\,\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\,\)上有条运动的定长弦\(\,AB\,\),
原点在定长动线段\(\,AB\,\)及其延长线上的垂足为\(\,T\,\),动点\(\,T\,\)的轨迹是?

【注】已知点\(\,A(x_1,y_1)\,\)和点\(\,B(x_2,y_2)\,\),则原点在线段\(\,AB\,\)上的垂足为:
\(\,\left(-\dfrac{\left(y_1-y_2\right)\left(x_1y_2-x_2y_1\right)}{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}\,,\,\dfrac{\left(x_1-x_2\right)\left(x_1y_2-x_2y_1\right)}{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}\right)\,\)

【谢谢kk补充】:\(\big(x^2+y^2\big)\left(\dfrac{x^2}{b^2}+\dfrac{y^2}{a^2}-\dfrac{(x^2+y^2)^2}{a^2b^2}\right)=\left(\dfrac{m}{2}\right)^2\left(\dfrac{x^2}{b^2}+\dfrac{y^2}{a^2}\right)^2\)

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-8-5 13:32
设 `\Gamma`: `ax^2+by^2=1`,其上定长动弦 `AB=m`,则 `O` 在直线 `AB` 上的垂足轨迹为
\[m^2(bx^2+ay^2)^2+4(x^2+y^2)\bigl(ab(x^2+y^2)^2-bx^2-ay^2\bigr)=0.\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-8-5 13:47
更一般命题:
设 `\Gamma`: `ax^2+by^2=1`,定点 `P(x_0,y_0)`,`\Gamma` 上定长动弦 `AB=m`,则 `P` 在直线 `AB` 上的垂足轨迹为
\begin{align*}
&m^2\bigl(b(x-x_0)^2+a(y-y_0)^2\bigr)^2\\
&+4\bigl((x-x_0)^2+(y-y_0)^2\bigr)\bigl(ab(x^2-x_0x+y^2-y_0y)^2-b(x-x_0)^2-a(y-y_0)^2\bigr)=0.
\end{align*}

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-8-5 14:42
还是码一下过程吧,不需要用到楼主提供的垂足坐标公式,计算也不复杂,早知不开 MMC(A)……

首先设 `AB`: `y=kx+t`,与 `\Gamma` 联立后由韦达定理得
\[x_1+x_2=-\frac{2bkt}{a+bk^2},\, x_2x_2=\frac{bt^2-1}{a+bk^2},\]由弦长公式有
\[m^2=\bigl((x_1+x_2)^2-4x_1x_2\bigr)(1+k^2),\]代入化简整理得
\[m^2(a+bk^2)^2=4(a+bk^2-abt^2)(1+k^2),\quad(*)\]而垂足为 `y=kx+t` 与 `x-x_0=-k(y-y_0)` 的交点,联立后解出 `k`, `t` 有
\[k=-\frac{x-x_0}{y-y_0},\, t=-\frac{x^2-x_0x+y^2-y_0y}{y-y_0},\]代入式 (*) 中,整理即得 3# 的方程。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-11-2 06:23
当$M=0$时是垂足曲线,与椭圆相切于四点$(±a,0)(0,±b)$.还有什么时候会与椭圆相切呢?
1#曲线与椭圆相交,求$m$的最大值?
结果是
  1. 2Sqrt[-Root[a^8 b^4-2 a^6 b^6+a^4 b^8+(2 a^8 b^2+2 a^2 b^8) #1+(a^8+10 a^6 b^2-9 a^4 b^4+10 a^2 b^6+b^8) #1^2+(4 a^6+12 a^4 b^2+12 a^2 b^4+4 b^6) #1^3&,1]]
Copy the Code
即$m^2/2$为关于$x$的方程\[4 x^3 \left(a^2+b^2\right)^3+2 a^2 b^2 x \left(a^6+b^6\right)+x^2 \left(a^4+11 a^2 b^2+b^4\right) \left(a^4-a^2 b^2+b^4\right)+a^4 b^4 \left(a^2-b^2\right)^2=0\tag1\]的实根.
可以验证,式(1)总有一个实根和两个虚根:
它的判别式可以分解为\[\Delta=-16 a^6 b^6 \left(a^8-5 a^6 b^2+15 a^4 b^4-5 a^2 b^6+b^8\right)^3\]
然后\[\min(t^8-5 t^6+15 t^4-5 t^2+1)≈0.557811>0\]
所以$\Delta<0$.

Mobile version|Discuz Math Forum

2025-5-31 11:20 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit