|
Last edited by 青青子衿 2019-8-5 13:57椭圆\(\,\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\,\)上有条运动的定长弦\(\,AB\,\),
原点在定长动线段\(\,AB\,\)及其延长线上的垂足为\(\,T\,\),动点\(\,T\,\)的轨迹是?
【注】已知点\(\,A(x_1,y_1)\,\)和点\(\,B(x_2,y_2)\,\),则原点在线段\(\,AB\,\)上的垂足为:
\(\,\left(-\dfrac{\left(y_1-y_2\right)\left(x_1y_2-x_2y_1\right)}{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}\,,\,\dfrac{\left(x_1-x_2\right)\left(x_1y_2-x_2y_1\right)}{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}\right)\,\)
【谢谢kk补充】:\(\big(x^2+y^2\big)\left(\dfrac{x^2}{b^2}+\dfrac{y^2}{a^2}-\dfrac{(x^2+y^2)^2}{a^2b^2}\right)=\left(\dfrac{m}{2}\right)^2\left(\dfrac{x^2}{b^2}+\dfrac{y^2}{a^2}\right)^2\) |
|