Forgot password?
 Register account
View 1610|Reply 1

[函数] 分子函数

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2019-8-5 20:02 |Read mode
定义正有理数q=$\frac ab$(a,b是互质整数,a,b>0)的函数Num(q)=a,Den(q)=b,它们可以用最大公约数和最小公倍数表示:$Num(q)=[q,1],Den(q)=\frac 1{(q,1)}$,那么,最大公约数和最小公倍数能否用Num(q),Den(q)与初等函数的复合表示出?

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2022-12-15 02:55

necroposting

Last edited by hbghlyj 2022-12-15 10:14$(a,b)=b\times(\frac ab,1)=b\div Den(\frac ab)$
$[a,b]=b\times[\frac ab,1]=b\times Num(\frac ab)$
Den和Num可以相互表示:
$Den(\frac ab)=Num(\frac ba)$

Mobile version|Discuz Math Forum

2025-5-31 11:07 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit