Forgot password?
 Register account
View 1559|Reply 4

[函数] 非线性迭代

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2019-8-6 19:35 |Read mode
f(x)=x²-x+1,求$f^{(2019)}(x)$=0所有根的平方和

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2019-8-6 22:47
回复 1# hbghlyj
迭代两次及以上,所有根的平方和都是零。
  1. equ = Nest[#^2 - # + 1 &, x, 7] == 0
  2. Total[x^2 /. Solve[equ, x]] // FullSimplify
Copy the Code

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2019-8-6 23:50
回复 2# 青青子衿
所以我们得到:n>2,2n多项式$f^{(n)}(x)$的首项系数为1,$x^{2n-1}$项系数为$-2^{n-1}$,$x^{2n-2}$项系数为$2^{2n-3}$,还能往下接吗?

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2019-8-6 23:58
倒着接末尾几个也容易:常数项是1,一次项系数是-1,二次项系数是n,三次项系数是$-n^2+n$,四次项系数是$-n^3−\frac 52n^2+\frac 32n$,五次项系数是$−n^4 +\frac{13}3n^3−6n^2 + \frac83 n$还能接吗?

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2019-8-7 00:15
易知 `f^n(x)` 的次数是 `2^n`,为方便书写记 `p=2^n`,假设
\[f^n(x)=x^p+a_nx^{p-1}+b_nx^{p-2}+\cdots,\]则
\begin{align*}
f^{n+1}(x)&=(x^2-x+1)^p+a_n(x^2-x+1)^{p-1}+\cdots \\
&=x^{2p}-px^{2p-1}+(p+C_p^2+a_n)x^{2p-2}+\cdots,
\end{align*}故
\begin{align*}
a_{n+1}&=-p=-2^n,\\
b_{n+1}&=p+C_p^2+a_n=2^n+2^{n-1}(2^n-1)-2^{n-1}=2^{2n-1},
\end{align*}所以对二次及以上迭代的所有根的平方和为 `a_{n+1}^2-2b_{n+1}=0`。

Mobile version|Discuz Math Forum

2025-5-31 11:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit