|
Author |
hbghlyj
Posted 2019-8-7 12:25
回复 2# realnumber 易知{$a_n$}是一个单调不减的数列,对于$i \geq 2, a_{2i}-a_{2i-2}=\left(a_{2i-1}+a_{i}\right)-a_{2i-1}=a_{i}$
$a_{2^{m+1}}-a_{2^m}=\sum_{i=2^{m-1}+1}^{2^{m}}\left(a_{2 i}-a_{2i-2}\right)=\sum^{2^m}_{i=2^{m-1}+1}a_i \leq 2^{m-1}a_{2^m}$
从而$\frac{a_{2^{m+1}}}{a_{2^m}}\leq2^{m-1}+1\lt2^m$
对于任意正整数$n \geq3$,都有$a_{2^n}=a_4 \prod^{n-1}_{m=2}\frac{a_{2^{m+1}}}{a_{2^m}}\lt4\prod^{n-1}_{m=2}2^m\lt2^{\frac{n^2}2}$ |
|