Forgot password?
 Register account
View 1441|Reply 10

$x^2-x-1$是$ax^{17}+bx^{16}+1$的因式

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2019-8-7 20:14 |Read mode
已知$a,b$是整数,$x^2-x-1$是$ax^{17}+bx^{16}+1$的因式,试求$a,b$的值。

会不会和分圆多项式有关?
p.jpg

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2019-8-7 20:24
可以作倒数变换然后除法。
$x^2+x-1|x^{17}+bx+a$
$x^2+x-1|(1597+b)x+a-987$
∵deg($x^2+x-1$)>deg((1597+b)x+a-987)
∴(1597+b)x+a-987≡0
∴b=-1597,a=987

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

hejoseph Posted 2019-8-7 21:35
肯定和分圆多项式无关,分圆多项式的根都是1的单位根,但 $x^2-x-1$ 的根不是单位根。
直接求出根代入再求系数也没多难的,$x^2-x-1=0$ 的根是 $x=(1\pm\sqrt 5)/2$,由此得 $x^2=(3\pm\sqrt 5)/2$,$x^4=(7\pm 3\sqrt 5)/2$,$x^8=(47\pm 21\sqrt 5)/2$,$x^{16}=(2207\pm 987\sqrt 5)/2$,$x^{17}=(1\pm\sqrt 5)/2\times(2207\pm 987\sqrt 5)/2=(3571\pm 1597\sqrt 5)/2$,然后就能得方程组
\[
\left\{
\begin{aligned}
&\frac{3571}{2}a+\frac{2207}{2}b+1=0\\
&\frac{1597}{2}a+\frac{987}{2}b=0
\end{aligned}
\right.
\]
求得
\[
\left\{
\begin{aligned}
a&=987\\
b&=-1597
\end{aligned}
\right.
\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-8-7 22:16
可以作倒数变换然后除法。
$x^2+x-1|x^{17}+bx+a$
$x^2+x-1|(1597+b)x+a-987$
∵deg($x^2+x-1$ ...
hbghlyj 发表于 2019-8-7 20:24
第二行这个 1597 是怎么算的?
我的计算方法是这样
\begin{align*}
x^{17}
&=x(x^2+x-1-x+1)^8\\
&\equiv x(-x+1)^8\\
&=x(x^2+x-1-3x+2)^4\\
&\equiv x(-3x+2)^4\\
&=x\bigl(9(x^2+x-1)-21x+13\bigr)^2\\
&\equiv x(-21x+13)^2\\
&=x\bigl(441(x^2+x-1)-987x+610\bigr)\\
&\equiv x(-987x+610)\\
&=-987(x^2+x-1)+(987+610)x-987\\
&\equiv1597x-987\pmod{x^2+x-1},
\end{align*}貌似有点笨……

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2019-8-7 22:52
回复 4# kuing

我最笨,想到去除法可以得到结果,又看见结果,就没动笔了。

多谢各位!

有没可能与生成函数,二阶递推式扯上关系?

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2019-8-8 09:31
今天动笔写了一理长除法,发现商
$$a,a+b,2a+b,3a+2b,5a+3b,\cdots,987a+610b$$其中$a$的系数与$b$的系数正好是 Fibonacci 数列相邻两项。
商中$a$的系数是 Fibonacci 前15项,$a$的系数是 Fibonacci 前14项,依题,则需$$(610a+377b)+(987a+610b)=0,987a+610b+1=0$$硬t解即是。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2019-8-8 09:46
转载同事看到的解法
f.jpg

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

hejoseph Posted 2019-8-8 09:48
反正这种题目没什么难度,就是计算繁琐而已

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2019-8-8 09:51
回复 8# hejoseph



何版一览众山小

另外,长除法,顺便得到的最后分解结果为$$(x^2-x-1)(987 x^{15}-610 x^{14}+377 x^{13}-233 x^{12}+144 x^{11}-89 x^{10}+55 x^9-34 x^8+21 x^7-13 x^6+8 x^5-5 x^4+3 x^3-2 x^2+x-1).$$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-8-8 12:05
:-O 原来和 Fibonacci 相关,有点儿意思

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

facebooker Posted 2019-8-8 13:24
捕获.JPG

类似的题目还挺多

Mobile version|Discuz Math Forum

2025-5-31 11:01 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit