Forgot password?
 Register account
View 1497|Reply 4

[组合] 满足$4x+3y+2z=n$的正整数对$(x,y,z)$的个数

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2019-8-7 20:28 |Read mode
Last edited by hbghlyj 2019-8-8 15:24设$f\left(n\right)$为满足$4x+3y+2z=n$的正整数对$(x,y,z)$的个数,求f(2009)-f(2000)

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-8-7 21:38
参考 forum.php?mod=redirect&goto=findpost& … d=5531&pid=27824

PS、这题应该算 [组合] 吧

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2019-8-8 13:22
Last edited by 青青子衿 2019-8-8 14:46回复 2# kuing
通项公式:
\begin{align*}
N\left(2,3,4\,;b\right)&=\begin{split}
&\phantom{+\,\,}\frac{1}{48}b^2+\frac{3}{16}b+\frac{107}{288}+\frac{1}{16}(b+1)\cos(\pi b)\\
&+\frac{7}{32}\cos(\pi b)+\frac{2}{9}\cos\left(\frac{2\pi}{3}b\right)+\frac{1}{8}\cos\left(\frac{\pi}{2}b\right)+\frac{1}{8}\cos\left[\frac{\pi}{2}(b+1)\right]
\end{split}\\
\\
N\left(2,3,4\,;b\right)&=\operatorname{round}\left(\frac{\left(b+3\right)^2}{12}\right)-\operatorname{floor}\left(\frac{b+3}{4}\right)\cdot\operatorname{floor}\left(\frac{b+5}{4}\right)\\
\end{align*}
如果用这些“类取整函数”来表示这个通项公式,表示方法不唯一,应该还有其他形式……

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2019-8-8 15:28
回复 2# kuing
所以我曾建议,应该细分些,比如初等数论主题分为不定方程、阶与原根、连分数、素数分布、数论函数,最好能多选

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-8-8 15:55
回复 4# hbghlyj

拒绝

Mobile version|Discuz Math Forum

2025-5-31 10:53 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit