|
kuing
posted 2019-8-9 00:43
第二个,还是想玩向量,不过换一种撸法,不知对不对:
设 $\vv{OA}=\bm a$, $\vv{OB}=\bm b$ 则 $\vv{OC}=-\bm a+\bm b$, $\vv{OD}=-\bm a$, $\vv{OE}=-\bm b$, $\vv{OF}=\bm a-\bm b$。
设 $\vv{AA_1}=\bm v$, $\vv{CC_2}=c\bm v$, $\vv{EE_2}=e\bm v$, $\vv{FF_2}=f\bm v$,则
\begin{gather*}
\vv{OA_2}=\bm a+\frac12\bm v,\,\vv{OB_2}=\bm b+\frac13\bm v,\,\vv{OC_2}=-\bm a+\bm b+c\bm v,\\
\vv{OD_2}=-\bm a+\frac14\bm v,\,\vv{OE_2}=-\bm b+e\bm v,\,\vv{OF_2}=\bm a-\bm b+f\bm v,
\end{gather*}于是由共面得
\[
\begin{vmatrix}
1 & 1 & 1 & 1 \\
1 & 0 & -1 & -1 \\
0 & 1 & 1 & 0 \\
\dfrac12 & \dfrac13 & c & \dfrac14 \\
\end{vmatrix}
=
\begin{vmatrix}
1 & 1 & 1 & 1 \\
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 \\
\dfrac12 & \dfrac13 & e & \dfrac14 \\
\end{vmatrix}
=
\begin{vmatrix}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & -1 \\
0 & 1 & -1 & 0 \\
\dfrac12 & \dfrac13 & f & \dfrac14 \\
\end{vmatrix}
=0,
\]解得 `c=5/24`, `e=5/12`, `f=13/24`。
PS、同样地,`\bm v` 与结论无关,即棱柱可以随便地斜。 |
|