Forgot password
 Register account
View 2248|Reply 7

[几何] 一道平面截棱柱和棱锥为几等分点的立体几何题

[Copy link]

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2019-8-8 22:55 |Read mode
大神们,来呀,来做一下这两道立体几何题:
blog11.png
blog12.png
blog13.png
blog14.png
妙不可言,不明其妙,不着一字,各释其妙!

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2019-8-8 23:56
第一个:问的应该是 C', E', F' 吧?
设 $\vv{PC'}=c\vv{PC}$, $\vv{PE'}=e\vv{PE}$, $\vv{PF'}=f\vv{PF}$,则
\[\led
\vv{PA}-\vv{PB}+\vv{PD}-\vv{PE}&=\bm0,\\
2\vv{PB}-2\vv{PC}+\vv{PD}-\vv{PA}&=\bm0,\\
\vv{PC}-\vv{PD}+\vv{PF}-\vv{PA}&=\bm0,
\endled
\iff\led
2\vv{PA'}-\frac32\vv{PB'}+\frac43\vv{PD'}-\frac1e\vv{PE'}&=\bm0\\
3\vv{PB'}-\frac2c\vv{PC'}+\frac43\vv{PD'}-2\vv{PA'}&=\bm0\\
\frac1c\vv{PC'}-\frac43\vv{PD'}+\frac1f\vv{PF'}-2\vv{PA'}&=\bm0
\endled\]因为带撇的那些点都共面,所以有
\[2-\frac32+\frac43-\frac1e=3-\frac2c+\frac43-2=\frac1c-\frac43+\frac1f-2=0,\]解得 `c=6/7`, `e=6/11`, `f=6/13`。

PS、`P` 的位置与结论无关。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2019-8-9 00:43
第二个,还是想玩向量,不过换一种撸法,不知对不对:
设 $\vv{OA}=\bm a$, $\vv{OB}=\bm b$ 则 $\vv{OC}=-\bm a+\bm b$, $\vv{OD}=-\bm a$, $\vv{OE}=-\bm b$, $\vv{OF}=\bm a-\bm b$。
设 $\vv{AA_1}=\bm v$, $\vv{CC_2}=c\bm v$, $\vv{EE_2}=e\bm v$, $\vv{FF_2}=f\bm v$,则
\begin{gather*}
\vv{OA_2}=\bm a+\frac12\bm v,\,\vv{OB_2}=\bm b+\frac13\bm v,\,\vv{OC_2}=-\bm a+\bm b+c\bm v,\\
\vv{OD_2}=-\bm a+\frac14\bm v,\,\vv{OE_2}=-\bm b+e\bm v,\,\vv{OF_2}=\bm a-\bm b+f\bm v,
\end{gather*}于是由共面得
\[
\begin{vmatrix}
1 & 1 & 1 & 1 \\
1 & 0 & -1 & -1 \\
0 & 1 & 1 & 0 \\
\dfrac12 & \dfrac13 & c & \dfrac14 \\
\end{vmatrix}
=
\begin{vmatrix}
1 & 1 & 1 & 1 \\
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 \\
\dfrac12 & \dfrac13 & e & \dfrac14 \\
\end{vmatrix}
=
\begin{vmatrix}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & -1 \\
0 & 1 & -1 & 0 \\
\dfrac12 & \dfrac13 & f & \dfrac14 \\
\end{vmatrix}
=0,
\]解得 `c=5/24`, `e=5/12`, `f=13/24`。

PS、同样地,`\bm v` 与结论无关,即棱柱可以随便地斜。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2019-8-9 01:26
回复 3# kuing

呃……这个还是用回几何方法秒吧……用向量连行列式都出来实在是太XX……

不妨设侧棱长为 `1`,由下图知 `2BB_2-AA_2=2CC_2-DD_2`,得 `CC_2=5/24`。
QQ截图20190809012534.png
由于是正六边形,故显然 `A_2D_2`, `B_2E_2`, `C_2F_2` 共点于 `O_2` 且 `OO_2` 与侧棱平行(本来想在图上画出来的,一画才发现原图是随手画的,连起来根本不共点,就算了),于是 `AA_2+DD_2=BB_2+EE_2=CC_2+FF_2`,由此得 `EE_2=5/12`, `FF_2=13/24`。

70

Threads

442

Posts

19

Reputation

Show all posts

hejoseph posted 2019-8-9 08:54
若 $\vv{AP_1}$,$\vv{AP_2}$,$\vv{AP_3}$ 不共面,$\vv{AQ}=x\vv{AP_1}+y\vv{AP_2}+z\vv{AP_3}$,则点 $P_1$、$P_2$、$P_3$、$Q$ 共面的充要条件是 $x+y+z=1$。

70

Threads

442

Posts

19

Reputation

Show all posts

hejoseph posted 2019-8-9 08:55
看题目是直接画图还是求出具体的量,直接画图也有方法的。

84

Threads

2340

Posts

4

Reputation

Show all posts

original poster 其妙 posted 2019-8-14 12:09
回复 3# kuing
厉害!

84

Threads

2340

Posts

4

Reputation

Show all posts

original poster 其妙 posted 2019-8-14 12:10
若 $\vv{AP_1}$,$\vv{AP_2}$,$\vv{AP_3}$ 不共面,$\vv{AQ}=x\vv{AP_1}+y\vv{AP_2}+z\vv{AP_3}$,则点 $P ...
hejoseph 发表于 2019-8-9 08:54
这个结论好!

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:30 GMT+8

Powered by Discuz!

Processed in 0.085951 seconds, 25 queries