|
Last edited by hbghlyj 2023-4-28 16:203.已知$a_1\leq a_2 \leq \cdots \leq a_n,b_1 \leq b_2\leq \cdots \leq b_n,c_i \geq 0(1\leq i \leq n)$,证明:$$\sum_{i=1}^n c_i \sum_{i=1}^n c_ia_ib_i\geq\sum_{i=1}^n c_ia_i\sum_{i=1}^n c_ib_i$$
8.对于正数$a,b,c$有$\sqrt{a^2+b^2-ab}+\sqrt{b^2+c^2-bc} \geq \sqrt{a^2+c^2+ac}$
21.对于正数$x,y,z$有$(xy+yz+zx+1)(x+y+z)\geq \sqrt{6\pi(y+z)}$,设a,b,c皆为正数,证明
Ⅰ $\sum\frac{(a+b)^2}{c^2+ab}\geq 6$
Ⅱ$\sum {\frac{{a + bc}}{{{a^2} + a}}} \geq3$
26.已知实数$x_1,x_2,\cdots,x_{100}$满足$x_1+x_2+\cdots+x_{100}=1$且$\left|x_{k+1}-x_k\right|\lt\frac1{500},k=1,2,\cdots,99$,证明:存在整数$i_1,i_2,\cdots,i_{100}$满足$1\leq i_1\lt i_2\lt\cdots\lt i_{100}\leq 100$使得$\frac{49}{100}\leq\sum_{k=1}^{50}x_{i_k}\leq\frac{51}{100}$ |
|