Forgot password?
 Register account
View 1815|Reply 7

[不等式] NMO试题不等式部分

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2019-8-8 23:32 |Read mode
Last edited by hbghlyj 2023-4-28 16:203.已知$a_1\leq a_2 \leq \cdots \leq a_n,b_1 \leq b_2\leq \cdots \leq b_n,c_i \geq 0(1\leq i \leq n)$,证明:$$\sum_{i=1}^n c_i \sum_{i=1}^n c_ia_ib_i\geq\sum_{i=1}^n c_ia_i\sum_{i=1}^n c_ib_i$$

8.对于正数$a,b,c$有$\sqrt{a^2+b^2-ab}+\sqrt{b^2+c^2-bc} \geq \sqrt{a^2+c^2+ac}$

21.对于正数$x,y,z$有$(xy+yz+zx+1)(x+y+z)\geq \sqrt{6\pi(y+z)}$,设a,b,c皆为正数,证明
Ⅰ $\sum\frac{(a+b)^2}{c^2+ab}\geq 6$
Ⅱ$\sum {\frac{{a + bc}}{{{a^2} + a}}} \geq3$

26.已知实数$x_1,x_2,\cdots,x_{100}$满足$x_1+x_2+\cdots+x_{100}=1$且$\left|x_{k+1}-x_k\right|\lt\frac1{500},k=1,2,\cdots,99$,证明:存在整数$i_1,i_2,\cdots,i_{100}$满足$1\leq i_1\lt i_2\lt\cdots\lt i_{100}\leq 100$使得$\frac{49}{100}\leq\sum_{k=1}^{50}x_{i_k}\leq\frac{51}{100}$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-8-9 03:14
第一个,挺不错的不等式,乃切比雪夫不等式的推广(当 `c_i` 全相等时就是切比雪夫)。

\[f(a_n)=\sum c_i\sum c_ia_ib_i-\sum c_ia_i\sum c_ib_i,\]有
\[f'(a_n)=c_nb_n\sum c_i-c_n\sum c_ib_i\geqslant c_nb_n\sum c_i-c_n\sum c_ib_n=0,\]所以 `f(a_n)\geqslant f(a_{n-1})`,同理 `f(b_n)\geqslant f(b_{n-1})`,这说明只需证明当 `a_n=a_{n-1}` 且 `b_n=b_{n-1}` 时即可,此时不等式变成
\begin{align*}
&\bigr(c_1+\cdots+(c_{n-1}+c_n)\bigr) \bigr(c_1a_1b_1+\cdots+(c_{n-1}+c_n)a_{n-1}b_{n-1}\bigr)\\
\geqslant{}& \bigr(c_1a_1+\cdots+(c_{n-1}+c_n)a_{n-1}\bigr) \bigr(c_1b_1+\cdots+(c_{n-1}+c_n)b_{n-1}\bigr),
\end{align*}将 `c_{n-1}+c_n` 看成新的 `c_{n-1}`,即是 `n-1` 元的情形,如果此推,最终变成一元,为恒等式,所以结论成立。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-8-9 03:23
Ⅰ`\sum\frac{(a+b)^2}{c^2+ab}\geq 6` 这个见《撸题集》P.937 题目 6.10.7

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-8-9 17:19
Ⅱ`\sum {\frac{{a + bc}}{{{a^2} + a}}} \geq3` 这个也不难:
\begin{align*}
\sum\frac{a+bc}{a^2+a}
&=\sum\frac1{a+1}+\frac1{abc}\sum\frac{(bc)^2}{a+1}\\
&\geqslant\frac9{a+b+c+3}+\frac1{abc}\cdot\frac{(bc+ca+ab)^2}{a+b+c+3}\\
&\geqslant\frac9{a+b+c+3}+\frac{3(a+b+c)}{a+b+c+3}\\
&=3.
\end{align*}

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-8-9 17:23
至于21、26,看起来都有录入问题,先不鸟。

Comment

已修改  Posted 2023-4-28 23:20

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-4-28 23:17
8.$\newcommand{\o}{\omega}$ Letting $\o=e^{2\pi i/3}=-\frac{1}{2}+\left(\frac{\sqrt{3}}{2}\right)i$, then note that $$|a+b\o|=\sqrt{a^2-ab+b^2}$$ (Eisenstein integers.) Also, $|\o|=1$ so that $$|b\o+c\o^2|=|\o\cdot(b+c\o)|=|b+c\o|=\sqrt{b^2-bc+c^2}$$ and $-\o^2=\o+1$ so that $$|a-c\o^2|=|(a+c)+c\o|=\sqrt{(a+c)^2-(a+c)c+c^2}=\sqrt{a^2+ac+c^2}$$ By the triangle inequality, $$|a+b\o|+|b\o+c\o^2| \geq|(a+b\o)-(b\o+c\o^2)|= |a-c\o^2|$$ which becomes $$\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}\geq\sqrt{a^2+ac+c^2}$$MSE

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2023-6-12 23:09
Last edited by Czhang271828 2023-6-12 23:17
hbghlyj 发表于 2023-4-28 23:17 8.$\newcommand{\o}{\omega}$ Letting $\o=e^{2\pi i/3}=-\frac{1}{2}+\left(\frac{\sqrt{3}}{2}\right)i$, ...
其实, 这样就可以了.
$type diagram-20230612 (2).svg (20.12 KB, Downloads: 79)
取等当且仅当 $ab+bc-ac=0$.

Mobile version|Discuz Math Forum

2025-5-31 11:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit