Forgot password?
 Register account
View 1381|Reply 2

[数列] NMO试题数列部分

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2019-8-9 00:00 |Read mode
Last edited by hbghlyj 2019-8-10 18:41数列$\{a_n\}_{n\geq},a_1=a_2=1,a_{n+1}=a_{\lfloor\frac{n+3}2\rfloor]}^2+(-1)^na_{\lfloor\frac n2\rfloor}^2,求通项$a_n$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-8-9 17:50
数列$\{a_n\}_{n\geq},a_1=a_2=1,a_{n+1}=a_{\left[\frac{n+3}2\right]}^2+(-1)^na_{\left[\fracn2\right]}^2,求通项$a_n$
hbghlyj 发表于 2019-8-9 00:00
红色那里是 MathJax 提示你那部分代码有错,怎么不修改下呢……显然是缺个空格而已……
当然,我个人建议向下取整用 $\lfloor$ 和 $\rfloor$ ,会好看一些,特别是像现在这种处于角标的情形。
\[
a_{n+1}=a_{\lfloor\frac{n+3}2\rfloor}^2+(-1)^na_{\lfloor\frac n2\rfloor}^2,
\]按奇偶分类,就是
\begin{align*}
a_{2k+1}&=a_{k+1}^2+a_k^2,\\
a_{2k}&=a_{k+1}^2-a_{k-1}^2,
\end{align*}列出来好像是斐波拉契?看来是它的性质之一,这样用第二数学归纳法应该不难证……

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2019-8-10 18:41
好的。已改正

Mobile version|Discuz Math Forum

2025-5-31 10:40 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit