Forgot password?
 Register account
View 1683|Reply 2

[数论] 变模数的二次同余方程组

[Copy link]

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2019-8-18 12:51 |Read mode
\begin{align*}
\left\{
\begin{split}
x\,\equiv44&\pmod{y\,\,}\\
x^2\equiv44&\pmod{y^2}
\end{split}
\right.
\end{align*}


“变模数”?!“变魔术”

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

hejoseph Posted 2019-8-19 10:29
Last edited by hejoseph 2019-8-19 11:46令 $x=my+44$,$x^2=ny^2+44$,其中 $m,n\in\mathbb{Z}$,则得方程
\[
(m^2-n)y^2+88my+1892=0
\]
当 $m^2=n$ 时,方程变为 $2my+43=0$,这是不可能的。
当 $m^2\neq n$ 时,$y$ 一定是 $1892$ 的因数,而 $1892^2=2^2\times 11\times 43$,逐一将 $y$ 值代入方程 $(m^2-n)y^2+88my+1892=0$ 中求整数解,得如下解:
1 $x$ 是任意整数,$y=\pm 1$
2 $x$ 是任意偶数,$y=\pm 2$
3 $x=947+1849t$,$y=\pm 43$
4 $x=-902+3698t$,$y=\pm 86$

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

 Author| 青青子衿 Posted 2019-8-19 13:10
回复 2# hejoseph
精彩!谢谢何版主!

Mobile version|Discuz Math Forum

2025-5-31 11:21 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit