Forgot password?
 Register account
View 1765|Reply 6

[函数] 集合

[Copy link]

1

Threads

1

Posts

11

Credits

Credits
11

Show all posts

numb Posted 2019-9-3 22:11 |Read mode
用[x]表示不超过x的最大整数,则集合{[1²/2005],[2²/2005],...,[2005²/2005]}中元素的个数为?

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2019-9-3 23:18
回复 1# numb
求解代码
1/2005. Range@2005^2 // Floor // Union // Length
求得结果
1504

1

Threads

1

Posts

11

Credits

Credits
11

Show all posts

 Author| numb Posted 2019-9-4 13:28
非常感谢,但请问求解代码是什么?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-9-5 02:10
回复 3# numb

意思就是用电脑软件计算的

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-9-5 02:16
猜想:记 `f(n)` 为如下集合的元素个数
\[\bigcup_{k=1}^n\left\{\left\lfloor\frac{k^2}n\right\rfloor\right\},\]则
\[f(n)=n+1-\left\lceil\frac n4\right\rceil.\]
注:`\lfloor x\rfloor` 表示向下取整,`\lceil x\rceil` 表示向下取整。

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2019-9-5 10:31
var
   i,a,b:longint;
begin
   a:=-1;b:=0;
   for i:=1 to 2005 do
      if trunc(i*i/2005)>a then begin a:=trunc(i*i/2005);b:=b+1;end;
   write(b);
end.
pascal程序运行结果就是1504

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2019-9-5 11:06
Last edited by 青青子衿 2019-9-5 12:51回复 5# kuing

猜想:记 `f(n)` 为如下集合的元素个数
\[\bigcup_{k=1}^n\left\{\left\lfloor\frac{k^2}n\right\rfloor\right\},\]则
\[f(n)=n+1-\left\lceil\frac n4\right\rceil.\]
注:`\lfloor x\rfloor` 表示向下取整,`\lceil x\rceil` 表示向下取整。
kuing 发表于 2019-9-5 02:16
好像上面的猜想是正确的。
其中,下面这几个通式在整数上是等价的:
\begin{align*}
&&\operatorname{floor}\left(\frac{3n+4}{4}\right)&
\quad\Leftrightarrow\quad
n+1-\operatorname{ceil}\left(\frac{n}{4}\right)\\
&&\Updownarrow\qquad&\\
&&\operatorname{floor}\left(\frac{3n}{4}\right)+1&\\
\end{align*}
参看:
A037915
a(n) = floor((3*n + 4)/4).
It appears that a (n) = number of distinct values among
Floor(i^2 / n) for i = 0, 1, 2, ..., n. - Samuel Vodovoz, Jun 15 2015.

Mobile version|Discuz Math Forum

2025-5-31 11:19 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit