Forgot password?
 Register account
View 1915|Reply 3

[函数] 一些函数方程

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2019-9-7 12:27 |Read mode
Last edited by hbghlyj 2020-1-28 10:51第一组.
(1)求二元函数f(m,n),对任何实数m,n,l有f(ml,n)+f(m,l)=f(m,nl)
(2)求二元函数f(x,y),对任意实数x,y有$f(x,y)=y^{x-1} f\left(x,\frac 1y\right)$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2019-9-7 12:31
Last edited by hbghlyj 2020-1-28 10:11第二组.三角函数
1.连续函数f(x),g(x)满足g(x-y)=g(x)g(y)+f(x)f(y),且对任意0<x<1,有0<xg(x)<f(x)<x,证明:$f(x)=\sin ⁡x,g(x)=\cos⁡ x$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2019-11-2 18:11
Last edited by hbghlyj 2020-1-28 10:09$\mathbf R^3=\{\vec a=(a_1,a_2,a_3)\mid a_1,a_2,a_3\in\mathbf R\}$,(外积)$\forall \vec a,\vec b \in {{\bf{R}}^3}[\vec a \wedge \vec b = ({a_2}{b_3} - {a_3}{b_2},{a_3}{b_1} - {a_1}{b_3},{a_1}{b_2} - {a_2}{b_1})],$,求所有f:$f:\mathbf R^3\to\mathbf R^3$,使$\forall \vec a,\vec b\in\mathbf R^3:(\vec a\wedge \vec b)\wedge(f(\vec a)\wedge f(\vec b))\parallel f((\vec a\wedge f(\vec b))\wedge(f(\vec a)\wedge \vec b))$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-1-28 10:57
回复 2# hbghlyj
$type 连续函数fx.docx (13.51 KB, Downloads: 6155) 只做到这里。要是能证明周期性就好了。

Mobile version|Discuz Math Forum

2025-5-31 10:36 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit