Forgot password?
 Register account
View 1688|Reply 1

[不等式] 中秋快乐!分式不等式

[Copy link]

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2019-9-13 21:10 |Read mode
已知正数$a,b,c$且$abc=1$,求证:$\Sigma\frac{a^2}{2a^3+b^3+c^3}\leqslant \frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{4}$
祝各位中秋快乐!吃饼玩题.

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2019-9-14 15:40
多松的不等式,你看看这放缩的尺度:
\begin{align*}
\sum\frac{a^2}{2a^3+b^3+c^3}
&\leqslant\sum\frac{a^2}4\left( \frac1{a^3+b^3}+\frac1{a^3+c^3} \right)\\
&=\frac14\sum\frac{a^2+b^2}{a^3+b^3}\\
&\leqslant\frac14\sum\frac2{a+b}\\
&\leqslant\frac14\sum\frac1{\sqrt{ab}}\\
&=\frac{\sqrt a+\sqrt b+\sqrt c}4
\end{align*}

Mobile version|Discuz Math Forum

2025-5-31 10:45 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit