Forgot password
 Register account
View 1699|Reply 1

[不等式] 中秋快乐!分式不等式

[Copy link]

281

Threads

550

Posts

2

Reputation

Show all posts

力工 posted 2019-9-13 21:10 |Read mode
已知正数$a,b,c$且$abc=1$,求证:$\Sigma\frac{a^2}{2a^3+b^3+c^3}\leqslant \frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{4}$
祝各位中秋快乐!吃饼玩题.

13

Threads

898

Posts

8

Reputation

Show all posts

色k posted 2019-9-14 15:40
多松的不等式,你看看这放缩的尺度:
\begin{align*}
\sum\frac{a^2}{2a^3+b^3+c^3}
&\leqslant\sum\frac{a^2}4\left( \frac1{a^3+b^3}+\frac1{a^3+c^3} \right)\\
&=\frac14\sum\frac{a^2+b^2}{a^3+b^3}\\
&\leqslant\frac14\sum\frac2{a+b}\\
&\leqslant\frac14\sum\frac1{\sqrt{ab}}\\
&=\frac{\sqrt a+\sqrt b+\sqrt c}4
\end{align*}

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:19 GMT+8

Powered by Discuz!

Processed in 0.012941 seconds, 22 queries