Forgot password
 Register account
View 2147|Reply 2

[不等式] 形式有点对称的无理不等式

[Copy link]

461

Threads

957

Posts

4

Reputation

Show all posts

青青子衿 posted 2019-9-21 23:46 |Read mode
\begin{gather*}
\frac{x}{4}\sqrt{\frac{x}{2}+\frac{3}{x}}+\frac{5}{x}\sqrt{\frac{x}{3}+\frac{2}{x}}\\
\geqslant \frac{\sqrt{\sqrt{1482071+517560\sqrt{6}+\sqrt{3316622753041+1736924658960\sqrt{6}}}}}{6\sqrt{6}}
\end{gather*}

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2019-9-22 02:50
这是用来吓人的吗……

原式化为
\[\frac{\sqrt2}8\left( x+\frac{20\sqrt6}{3x} \right)\sqrt{x+\frac6x},\]将系数字母化,下面设
\[f(x)=\left(x+\frac ax\right)^2\left(x+\frac bx\right),\]其中各字母均为正,求导易得
\[f'(x)=\frac{(x^2+a)\bigl(3x^4-(a-b)x^2-3ab\bigr)}{x^4},\]解得正数范围内的唯一极值点为
\[x=\frac{\sqrt{a-b+\sqrt{a^2+34ab+b^2}}}{\sqrt6},\]然而题目数据可能未经设计,把 `a=20\sqrt6/3`, `b=6` 代入变成
\[x=\frac13\sqrt{-9+10\sqrt6+\sqrt{681+3060\sqrt6}},\]有这么BT的极值点,才会有更BT的最终结果……

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2019-9-22 16:20
回复 1# 青青子衿

哪些常数,有什么特别的用意么?

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:57 GMT+8

Powered by Discuz!

Processed in 0.011615 seconds, 22 queries