Forgot password?
 Register account
View 1798|Reply 2

[几何] 解三角形面积最值

[Copy link]

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

guanmo1 Posted 2019-9-23 16:47 |Read mode
解三角形.png

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-9-23 17:07
命题:`\triangle ABC` 中,对任意 `\lambda\geqslant0`,有
\[\lambda a^2+bc\geqslant2\sqrt{4\lambda+1}S,\]当 `b=c` 且 `\cot A=2\lambda/\sqrt{4\lambda+1}` 时取等。

证明:
\begin{align*}
\LHS-\RHS&=\lambda(b^2+c^2-2bc\cos A)+bc-\sqrt{4\lambda+1}bc\sin A\\
&\geqslant\lambda(2bc-2bc\cos A)+bc-\sqrt{4\lambda+1}bc\sin A\\
&=\bigl( 2\lambda+1-2\lambda\cos A-\sqrt{4\lambda+1}\sin A \bigr)bc\\
&\geqslant\bigl( 2\lambda+1-\sqrt{(2\lambda)^2+4\lambda+1} \bigr)bc\\
&=0.
\end{align*}(其实就是照搬之前这帖 forum.php?mod=redirect&goto=findpost& … d=4413&pid=20005 的方法,改个写法罢了)

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

 Author| guanmo1 Posted 2019-9-23 19:59
赞!

Mobile version|Discuz Math Forum

2025-5-31 10:52 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit