Forgot password
 Register account
View 1923|Reply 3

[不等式] 一道小菜 但是还是吃不动

[Copy link]

107

Threads

224

Posts

1

Reputation

Show all posts

facebooker posted 2019-9-23 23:57 |Read mode
对于$x\in [ 1,+\infty)$
\begin{align*}
prove:\dfrac{1}{x}+\dfrac{\sqrt{2}}{\sqrt{1+x}}-\dfrac{2}{\sqrt{x}}\leqslant 0
\end{align*}

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2019-9-24 01:07
好像没啥意思啊……
\begin{align*}
\LHS&=\frac1x+\frac2{\sqrt{(1+1)(1+x)}}-\frac2{\sqrt x}\\
&\leqslant\frac1x+\frac2{1+\sqrt x}-\frac2{\sqrt x}\\
&=\frac{1-\sqrt x}{x+x\sqrt x}\\
&\leqslant0.
\end{align*}

Rate

Number of participants 1威望 +1 Collapse Reason
业余的业余 + 1

View Rating Log

107

Threads

224

Posts

1

Reputation

Show all posts

original poster facebooker posted 2019-9-24 01:13
回复 2# kuing

多谢!

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2019-9-24 13:00
回复 2# kuing
也可以这样做:
变成$\frac{{1 - 2\sqrt {\text{x}} }}{{\text{x}}} + \frac{{\sqrt 2 }}{{\sqrt {1 + x} }}$,所以单调递减,x=1时值为0,所以<=0

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:05 GMT+8

Powered by Discuz!

Processed in 0.012181 seconds, 23 queries