Forgot password?
 Register account
View 1568|Reply 3

[数论] 三个待验证的结论

[Copy link]

1

Threads

1

Posts

11

Credits

Credits
11

Show all posts

xst Posted 2019-9-26 19:57 |Read mode
希望数学大佬们有哪个会的讨论一下~

1.存在无穷多个$m \inZ $,使得 \[\varphi (m) = \sigma (m) \]其中:\[ \varphi (m) = m\mathop{\Pi}\limits_{p|m} (1-\frac{1}{p}) \]  \[ \sigma (m)= \mathop{\Pi}\limits_{p|m} (1+p+ \dots +p^{\alpha}) \]

2.形如$ p=13k+1 $的素数有无穷多个?

3.(不知道是否正确)判断此命题是否为真命题:
若{$ x_{n} $} $ _{+\infty} $的映射 {$ p | p|x_{n} $ }也是无穷数列,
则{$ x_{n+1} $} $ _{+\infty} $的映射{$ p | p|x_{n+1} $ }也是无穷数列;

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2019-9-26 20:12
回复 1# xst
第二个问题可以利用一个一般化的结论解决
Dirichlet的算术级数定理
Dirichlet's theorem on arithmetic progressions

1

Threads

1

Posts

11

Credits

Credits
11

Show all posts

 Author| xst Posted 2019-9-26 20:45
回复 2# 青青子衿

谢谢,找到了,学习了,其他的题目有思路嘛?

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-4-16 09:31
1. Yes, this was proved by Ford, Luca and Pomerance in 2010 (paper in Bulletin of the London Math. Soc.).
mathoverflow.net/questions/402919/does-the-eq … itely-many-solutions


3.不明白题目

Mobile version|Discuz Math Forum

2025-5-31 10:34 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit