Forgot password?
 Register account
View 1900|Reply 3

[不等式] 求三元函数的最大值

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2019-9-28 13:39 |Read mode
设$x,y,z\inR,x^2+y^2+z^2=19$,求$f(x,y,z)=12(x+y+z)-xyz$的最大值。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-9-28 14:17
不妨设 `z^2=\max\{x^2,y^2,z^2\}`,记 `t=xy`,则
\[t\leqslant\frac12(x^2+y^2)\leqslant\frac13(x^2+y^2+z^2)=\frac{19}3,\]然后照搬《撸题集》P.659 题目 5.1.56 的柯西方法,可得
\[f^2\leqslant(19+2t)\bigl( 12^2+(12-t)^2 \bigr)=75^2-(t-3)^2(17-2t)\leqslant75^2,\]当 `(x,y,z)=(1,3,3)` 时取等。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2019-9-28 16:54
随手搜到一个三元最值类题

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-4-18 09:20
对不起,该文档已被删除

Mobile version|Discuz Math Forum

2025-5-31 11:12 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit