Forgot password
 Register account
View 1512|Reply 1

[数列] 一道数列试题

[Copy link]

92

Threads

89

Posts

0

Reputation

Show all posts

aishuxue posted 2019-9-28 18:40 |Read mode
Last edited by aishuxue 2019-9-28 18:47已知数列$\{a_n\}$满足$a_1=a>0$, $a_2=1$, $a_{n+2}a_n=2\max\{a_{n+1},2\}$, 设$S_n$为数列$\{a_n\}$的前$n$项和, 若$S_{15}=39$, 求$\dfrac{S_{2018}-S_{20}}{S_{18}}$的值.
业余的业余 posted 2019-9-29 07:14
Last edited by 业余的业余 2019-9-29 07:22回复 1# aishuxue

当 $a\geqslant 2$ 时,数列为 $a,1,\frac 4a,4,2a,a,1\cdots$
当 $0\leqslant a<2$ 时,数列为 $a,1,\frac 4a,\frac 8a,4,a,1\cdots$

所以恒有 $a_{n+5}=a_n$(5个一循环), 记相邻 $5$ 项的和为 $A$, 前三项的和为 $p$, 显然有 $S_{15}=3A=39\implies A=13$

所求为 $\cfrac {403A+p-4A}{3A+p}=\cfrac {399A+p}{3A+p}$

看来还是要具体求出 $a$,

当 $a\geqslant 2$时, 有 $13=3a+5+\frac 4a$, 解之有 $a=2$ (另一增根舍去), 于是 $p=a+1+\frac 4a=5$
当 $0\leqslant a < 2$时, 有 $13=a+5+\frac {12}{a}$, 无合法解。

则 $a=2$ 是唯一合法选择,且所求 $=\cfrac {399\cdot 13+5}{39+5}$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:10 GMT+8

Powered by Discuz!

Processed in 0.014196 seconds, 24 queries