Forgot password
 Register account
View 1756|Reply 1

[函数] 极限为$\frac 1e$

[Copy link]

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2019-10-6 11:10 |Read mode
对$n\geq4$,$C_k=1-\frac1k-\frac1{k+1}-\cdots-\frac1n(1\leq k\leq n)$,存在正整数m,使$C_m\leq 0<C_{m+1}$,求证$\lim_{n\to \infty}\frac mn=\frac1e$
业余的业余 posted 2019-10-12 00:43
定积分的几何意义。

$C_m\leq 0<C_{m+1} \implies 1-C_m\geq 1>1-C_{m+1}$
$\displaystyle \implies \sum_{i=m}^n \frac 1i\geq 1 >\sum_{i=m+1}^n \frac 1i$
$\displaystyle \implies \int_{m-1}^n \frac 1x\mathrm{d}x >1>\int_{m}^{n-1}\mathrm{d}x$
$\implies e^{\ln n-\ln(m-1)}>e>e^{\ln (n-1)-\ln m}$
$\implies \frac n{m-1}>e>\frac {n-1}m$
令 $n\to \infty$, 夹逼, 有 $lim_{n\to\infty}\frac nm=e$ 即 $\lim_{n\to \infty}\frac mn=\frac 1e$ 得证。

细节可能有小问题。边界让我头疼。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:28 GMT+8

Powered by Discuz!

Processed in 0.011629 seconds, 22 queries