Forgot password?
 Register account
View 1384|Reply 0

[数列] 一个增强的数列问题

[Copy link]

3156

Threads

7932

Posts

45

Reputation

Show all posts

hbghlyj posted 2019-10-6 16:08 |Read mode
原题:
设数列$\{a_n\}$满足$a_1=1,a_{n+1}=a_n+\frac{1}{a_n}(n\geq1)$.求$[a_{2019}]$
$a_{n+1}^2=a_n^2+\frac{1}{a_n^2}+2$
$a_n^2=a_1^2+\sum_{k=1}^{n-1}(2+\frac{1}{a_k^2})=2n+\sum_{k=2}^{n-1}\frac{1}{a_k^2}\gt 2n$
$a_{2019}^2=2\cdot 2019+\sum_{k=2}^{2018}\frac{1}{2k}=4038+\frac{1}{2}\sum_{k=2}^{2018}\ln (1+\frac{1}{k-1})=4038+\frac{1}{2}\ln2018(2018\lt2^{12}\lt e^{12})<4038+6\lt4096=64^2$
增强版:
求最小的正整数n,使得$[a_n]=64$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 08:31 GMT+8

Powered by Discuz!

Processed in 0.036519 second(s), 21 queries

× Quick Reply To Top Edit