|
kuing
posted 2019-10-11 03:27
回复 5# isee
看看这样说行不行:不妨设 `B\leqslant C`,易证 `\sin^2B+\sin^2C=1-\cos(B-C)\cos(B+C)`,所以由上面得到的 `\sin^2B+\sin^2C=3/4` 得
\[\cos A=-\frac1{4\cos(B-C)}.\]
(1)当 `B`, `C` 均为锐角时,则 $B\nearrow\riff\sin B\nearrow\riff\sin C\searrow\riff C\searrow\riff\cos(B-C)\nearrow$,故由上式知当 $(B,C)\to(0,60\du)$ 时 `\cos A` 趋向最小,当 `B=C` 时 `\cos A` 最大,即 `\cos A\in(-1/2,-1/4]`;
(2)当 `C` 为钝角时,则 $B\nearrow\riff\sin B\nearrow\riff\sin C\searrow\riff C\nearrow\riff B+C\nearrow\riff\cos A\searrow$,故当 $(B,C)\to(0,120\du)$ 时 `\cos A` 趋向最小,且 `B` 可增加至使 `A\to0`,所以 `\cos A\in(1/2,1)`。
综上,`\cos A` 的取值范围是 `(-1/2,-1/4]\cup(1/2,1)`。 |
|