Forgot password?
 Register account
View 1612|Reply 3

[几何] 焦点三角形角平分线有关的椭圆离心率问题

[Copy link]

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2019-10-14 15:47 |Read mode
已知$ F_1, F_2 $为椭圆$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1(a>b>0)$的左、右焦点,点P是椭圆上任意一点(异于左右顶点),$ PM$平分角$ F_1PF_2 $(M为平分线与X轴交点), 且$ 2|PM|^2=|PF_1| |PF_2|$,则椭圆的离心率______。

0

Threads

1

Posts

15

Credits

Credits
15

Show all posts

荣昌乔治 Posted 2019-10-14 16:30
选填  直接特殊值
不妨p为上顶点
2 b平方=a平方
e=
二分之根号二

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-10-14 16:31
角平分线长公式 `w_a=\dfrac{\sqrt{bc(a+b+c)(b+c-a)}}{b+c}` 套一下就行了吧(此式中的 `a` 不是题目的 `a`)

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

 Author| 敬畏数学 Posted 2019-10-14 17:23
在高手启发下想到:三角形角平分线向量表示:$ \vv{PM}=\dfrac{|PF_2|}{|PF_1|+|PF_2|}\vv{PF_1}+\dfrac{|PF_1|}{|PF_1|+|PF_2|}\vv{PF_2}$,从而导出三角形角平分线长公式!

Mobile version|Discuz Math Forum

2025-5-31 10:42 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit