Forgot password?
 Register account
View 1464|Reply 1

[不等式] 求最值的一个小题 有时间的进来瞅瞅啊

[Copy link]

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

facebooker Posted 2019-10-21 20:26 |Read mode
$x,y\in(\frac{1}{4},1),\log_x(y-\frac{1}{4})+\log_y(x-\frac{1}{4})$的最小值__

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-10-21 20:54
不妨设 `1/4<x\leqslant y<1`,则 `\ln(y-1/4)\geqslant\ln(x-1/4)`, `1/\ln x\geqslant1/\ln y`,故由排序不等式得
\[\text{原式}=\frac{\ln(y-1/4)}{\ln x}+\frac{\ln(x-1/4)}{\ln y}\geqslant\frac{\ln(x-1/4)}{\ln x}+\frac{\ln(y-1/4)}{\ln y},\]而由均值有 `x^2+1/4\geqslant x`,得到当 `1/4<x<1` 时有
\[\ln(x^2)\geqslant\ln\left(x-\frac14\right)\iff\frac{\ln(x-1/4)}{\ln x}\geqslant2,\]对 `y` 同理,所以原式 `\geqslant4`,当 `x=y=1/2` 时取等,所以最小值就是 `4`。

Mobile version|Discuz Math Forum

2025-5-31 11:25 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit