Forgot password?
 Register account
View 2588|Reply 1

[不等式] 来自人教群的一道简单不等式

[Copy link]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2013-7-22 12:27 |Read mode
Last edited by hbghlyj 2025-3-21 19:06设 $x, y, z \inR^*$,求证:$$\frac{(x+1)(y+1)^2}{3 \sqrt[3]{z^2 x^2}+1}+\frac{(y+1)(z+1)^2}{3 \sqrt[3]{x^2 y^2}+1}+\frac{(z+1)(x+1)^2}{3 \sqrt[3]{y^2 z^2}+1} \geqslant x+y+z+3$$
分母三次根号神马的明显只是唬人的……

\begin{align*}
\sum\frac{(x+1)(y+1)^2}{3\sqrt[3]{z^2x^2}+1}&\geqslant\sum\frac{(x+1)(y+1)^2}{zx+z+x+1} \\
& =\sum\frac{(y+1)^2}{z+1} \\
& \geqslant \frac{\left( \sum(y+1) \right)^2}{\sum(z+1)} \\
& =x+y+z+3.
\end{align*}

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2013-7-23 21:17
回复 1# kuing
牛笔!

Mobile version|Discuz Math Forum

2025-5-31 10:40 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit