Forgot password
 Register account
View 2607|Reply 1

[不等式] 来自人教群的一道简单不等式

[Copy link]

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-7-22 12:27 |Read mode
Last edited by hbghlyj 2025-3-21 19:06设 $x, y, z \inR^*$,求证:$$\frac{(x+1)(y+1)^2}{3 \sqrt[3]{z^2 x^2}+1}+\frac{(y+1)(z+1)^2}{3 \sqrt[3]{x^2 y^2}+1}+\frac{(z+1)(x+1)^2}{3 \sqrt[3]{y^2 z^2}+1} \geqslant x+y+z+3$$
分母三次根号神马的明显只是唬人的……

\begin{align*}
\sum\frac{(x+1)(y+1)^2}{3\sqrt[3]{z^2x^2}+1}&\geqslant\sum\frac{(x+1)(y+1)^2}{zx+z+x+1} \\
& =\sum\frac{(y+1)^2}{z+1} \\
& \geqslant \frac{\left( \sum(y+1) \right)^2}{\sum(z+1)} \\
& =x+y+z+3.
\end{align*}

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-7-23 21:17
回复 1# kuing
牛笔!

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:10 GMT+8

Powered by Discuz!

Processed in 0.012135 seconds, 23 queries