Forgot password?
 Register account
View 1513|Reply 3

[函数] 三角变换,是否需要检验?

[Copy link]

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2019-11-20 10:44 |Read mode
已知$\alpha\in\mathbf{R},3\cos\alpha-\sin\alpha=\sqrt{5}$,求$3\sin\alpha+\cos\alpha$的值.

解:
$3\cos\alpha-\sin\alpha=\sqrt{5}$,设$3\sin\alpha+\cos\alpha=t$.
两式平方相加得:
$$(3\cos\alpha-\sin\alpha)^2+(3\sin\alpha+\cos\alpha)^2=5+t^2.$$

$$10=5+t^2,$$
所以
$$t=\pm\sqrt{5},$$

$$3\sin\alpha+\cos\alpha=\pm\sqrt{5}.$$

上面最后解出的答案是否需要检验?解题过程中有用到平方,是否有可能出现增根?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-11-20 11:50
从图形来看是必有两解的,圆与直线有两交点,目标函数(直线)与那直线不平行,自然会有两个值

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

 Author| Tesla35 Posted 2019-11-20 12:12
回复 2# kuing

good

46

Threads

323

Posts

2834

Credits

Credits
2834

Show all posts

业余的业余 Posted 2019-11-21 01:40
令 $\sin\beta=\frac {3}{\sqrt{10}}, \beta\in(0,\frac{\pi}{2})$, 于是有 $\sin(\beta-\alpha)=\frac {1}{\sqrt{2}}$, 且所求为 $\sqrt{10}\cdot(\cos(\beta-\alpha))$, 显然结果为 $\pm \sqrt{5}$

Mobile version|Discuz Math Forum

2025-5-31 11:12 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit