|
Author |
力工
Posted 2019-11-22 09:12
Last edited by hbghlyj 2025-3-9 20:21回复 2# kuing
7.数列 $\left\{a_n\right\}$ 满足 $a_1=3, a_{n+1}=\left(1+\frac{1}{n^2(n+1)^2}\right) a_n+\frac{1}{4^n}$ ,求证:$a_n<6$ .(已知:$e^{\frac{7}{20}} \approx 1.419$ )
证明:(i)证明:$f(x)=\ln (x+1)-\sqrt{x}$ 在 $(0,+\infty)$ 单调递减,$g(x)=\ln (x+1)-x \leq 0(x>0)$ .由于 $f^{\prime}(x)=\frac{1}{x+1}-\frac{1}{2 \sqrt{x}} \leq \frac{1}{x+1}-\frac{1}{x+1}=0, g^{\prime}(x)=\frac{1}{x+1}-1<0, \therefore f(x)<f(0)=0$ ,且 $g(x)<g(0)=0$ ,故原命题成立.即 $\ln (x+1)<\sqrt{x}, \ln (x+1)<x(x>0) \Leftrightarrow x+1<e^{\sqrt{x}}$ .
(ii)计算得 $a_2=4, a_3=\frac{601}{144}<6$ .而 $a_{n+1}=\left(1+\frac{1}{n^2(n+1)^2}\right) a_n+\frac{1}{4^n}<e^{\frac{1}{n(n+1)}} a_n+\frac{1}{4^n}$ .
$$
\text { 从而 } \frac{a_{n+1}}{a_n}<e^{\frac{1}{n(n+1)}}+\frac{1}{4^n a_n} \Rightarrow \ln \frac{a_{n+1}}{a_n}<\ln \left(e^{\frac{1}{n(n+1)}}+\frac{1}{4^n a_n}\right) \text {. }
$$
由于 $\ln \left(e^{\frac{1}{n(n+1)}}+\frac{1}{4^n a_n}\right)-\ln \left(e^{\frac{1}{n(n+1)}}\right)=\ln \left(1+\frac{\frac{1}{4^n a_n}}{e^{\frac{1}{n(n+1)}}}\right)<\frac{\frac{1}{4^n a_n}}{e^{\frac{1}{n(n+1)}}}<\frac{\frac{1}{4^n a_n}}{e^0}=\frac{1}{4^n a_n}$ ,
$$
\text { 故 } \ln \frac{a_{n+1}}{a_n}<\ln \left(e^{\frac{1}{n(n+1)}}\right)+\frac{1}{4^n a_n}=\frac{1}{n}-\frac{1}{n+1}+\frac{1}{4^n a_n}, \text { 累加得 } \ln \frac{a_n}{a_3}<\frac{1}{3}-\frac{1}{n}+\sum_{i=3}^n \frac{1}{4^n a_n}
$$
$$
<\frac{1}{3}+\sum_{i=3}^n \frac{1}{4^n a_3}=\frac{1}{3}+\frac{1}{a_3}\left(\frac{\frac{1}{4^3}\left(1-\left(\frac{1}{4}\right)^{n-2}\right)}{1-\frac{1}{4}}\right)<\frac{1}{3}+\frac{1}{192 a_3} \Rightarrow \frac{a_n}{a_3}<e^{\frac{1}{3}+\frac{1}{192 a_3}} \cdot(n>3)
$$
所以 $a_n<a_3 e^{\frac{1}{3}+\frac{1}{192 a_3}}=\frac{601}{144} e^{\frac{38608}{115392}}<\frac{21}{5} e^{\frac{7}{20}}<\frac{21}{5} \cdot \frac{142}{100}=\frac{2982}{500}<6 \text { .证毕.} . \text { .}$
|
|