Forgot password?
 Register account
View 1585|Reply 3

[数列] 一个数列的上界

[Copy link]

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2019-11-21 22:27 |Read mode
数列${a_n}$满足$a_1=3,a_{n+1}=(1+\frac{1}{n^2(n+1)^2})a_n+\dfrac{1}{4^n}$,
证明:$a_n<6$.(参考数据:$e^\dfrac{7}{20}≈1.419$)

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-11-22 00:01
这个不难,也无需用到那参考数值。

易得 `a_2=4`,显然 `a_n` 递增,故当 `n\geqslant2` 时 `a_n\geqslant4`,又显然
\[\frac1{n^2(n+1)^2}<\frac1{n^2}-\frac1{(n+1)^2},\]所以当 `n\geqslant2` 时有
\[\frac{a_{n+1}}{a_n}=1+\frac1{n^2(n+1)^2}+\frac1{4^na_n}<1+\frac1{n^2}-\frac1{(n+1)^2}+\frac1{4^{n+1}},\]于是
\begin{align*}
\frac{a_{n+1}}{a_2}
&<\prod_{k=2}^n\left( 1+\frac1{k^2}-\frac1{(k+1)^2}+\frac1{4^{k+1}} \right)\\
&<\left( \frac1{n-1}\sum_{k=2}^n\left( 1+\frac1{k^2}-\frac1{(k+1)^2}+\frac1{4^{k+1}} \right) \right)^{n-1}\\
&=\left( 1+\frac1{n-1}\left( \frac1{2^2}-\frac1{(n+1)^2}+\frac1{48}\left( 1-\frac1{4^{n-1}} \right) \right) \right)^{n-1}\\
&<\left( 1+\frac1{n-1}\left( \frac14+\frac1{48} \right) \right)^{n-1}\\
&<\left( 1+\frac1{n-1}\cdot\frac13 \right)^{n-1}\\
&<\sqrt[3]e,
\end{align*}所以
\[a_n<a_2\sqrt[3]e=4\sqrt[3]e<4\sqrt[3]3<4\sqrt[3]{\frac{27}8}=6.\]

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

 Author| 力工 Posted 2019-11-22 09:12
Last edited by hbghlyj 2025-3-9 20:21回复 2# kuing
7.数列 $\left\{a_n\right\}$ 满足 $a_1=3, a_{n+1}=\left(1+\frac{1}{n^2(n+1)^2}\right) a_n+\frac{1}{4^n}$ ,求证:$a_n<6$ .(已知:$e^{\frac{7}{20}} \approx 1.419$ )
证明:(i)证明:$f(x)=\ln (x+1)-\sqrt{x}$ 在 $(0,+\infty)$ 单调递减,$g(x)=\ln (x+1)-x \leq 0(x>0)$ .由于 $f^{\prime}(x)=\frac{1}{x+1}-\frac{1}{2 \sqrt{x}} \leq \frac{1}{x+1}-\frac{1}{x+1}=0, g^{\prime}(x)=\frac{1}{x+1}-1<0, \therefore f(x)<f(0)=0$ ,且 $g(x)<g(0)=0$ ,故原命题成立.即 $\ln (x+1)<\sqrt{x}, \ln (x+1)<x(x>0) \Leftrightarrow x+1<e^{\sqrt{x}}$ .
(ii)计算得 $a_2=4, a_3=\frac{601}{144}<6$ .而 $a_{n+1}=\left(1+\frac{1}{n^2(n+1)^2}\right) a_n+\frac{1}{4^n}<e^{\frac{1}{n(n+1)}} a_n+\frac{1}{4^n}$ .
$$
\text { 从而 } \frac{a_{n+1}}{a_n}<e^{\frac{1}{n(n+1)}}+\frac{1}{4^n a_n} \Rightarrow \ln \frac{a_{n+1}}{a_n}<\ln \left(e^{\frac{1}{n(n+1)}}+\frac{1}{4^n a_n}\right) \text {. }
$$

由于 $\ln \left(e^{\frac{1}{n(n+1)}}+\frac{1}{4^n a_n}\right)-\ln \left(e^{\frac{1}{n(n+1)}}\right)=\ln \left(1+\frac{\frac{1}{4^n a_n}}{e^{\frac{1}{n(n+1)}}}\right)<\frac{\frac{1}{4^n a_n}}{e^{\frac{1}{n(n+1)}}}<\frac{\frac{1}{4^n a_n}}{e^0}=\frac{1}{4^n a_n}$ ,
$$
\text { 故 } \ln \frac{a_{n+1}}{a_n}<\ln \left(e^{\frac{1}{n(n+1)}}\right)+\frac{1}{4^n a_n}=\frac{1}{n}-\frac{1}{n+1}+\frac{1}{4^n a_n}, \text { 累加得 } \ln \frac{a_n}{a_3}<\frac{1}{3}-\frac{1}{n}+\sum_{i=3}^n \frac{1}{4^n a_n}
$$
$$
<\frac{1}{3}+\sum_{i=3}^n \frac{1}{4^n a_3}=\frac{1}{3}+\frac{1}{a_3}\left(\frac{\frac{1}{4^3}\left(1-\left(\frac{1}{4}\right)^{n-2}\right)}{1-\frac{1}{4}}\right)<\frac{1}{3}+\frac{1}{192 a_3} \Rightarrow \frac{a_n}{a_3}<e^{\frac{1}{3}+\frac{1}{192 a_3}} \cdot(n>3)
$$

所以 $a_n<a_3 e^{\frac{1}{3}+\frac{1}{192 a_3}}=\frac{601}{144} e^{\frac{38608}{115392}}<\frac{21}{5} e^{\frac{7}{20}}<\frac{21}{5} \cdot \frac{142}{100}=\frac{2982}{500}<6 \text { .证毕.} . \text { .}$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-11-22 15:20
回复 3# 力工

这答案和我都想到了将 `a_n` 除过去,而我之后是连乘+放缩裂项+均值,他是取对数+放缩+累加,相比之下,我的处理很简洁,他的比较复杂而且不够紧,以至于要保留到 `a_3`,数字就难看了。
本质上,其实两种处理方法大致是相通的,而之所以我的更紧,关键在于我的 1/n^2(n+1)^2<1/n^2-1/(n+1)^2 比他降次裂项更紧,因此,如果他也用上这个,应该也不需要用 `a_3`。

Mobile version|Discuz Math Forum

2025-5-31 11:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit