Forgot password?
 Register account
View 1457|Reply 3

[数列] 数列题目 一会等比 一会等差 真的欲罢不能

[Copy link]

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

facebooker Posted 2019-11-26 19:24 |Read mode
Last edited by facebooker 2019-11-27 18:20数列$\{a_n\}$满足条件:对任意的$m,n\inN^*$,都有$a_{m+n}\geqslant a_m+a_n$,则称数列{$a_n$}具有性质$P$.
1)已知各项均为正数的等比数列{$a_n$}具有性质$P$,求数列公比$q$的最小值
2)已知各项均为正整数的数列$\{a_n\}$具有性质$P$.设$b_n=a_{a_n},c_n=a_{1+a_n}$,若数列$\{b_n\},\{c_n\}$均为等差数列,求证数列$\{b_n\},\{c_n\}$有相同的公差.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2019-11-28 00:05
Last edited by hbghlyj 2019-11-28 06:56回复 1# facebooker
(1)$q^{m+n}\geq q^m+q^n$,设$m\geq n$,$q^{m}\geq q^{m-n}+1$,若0<q≤1,$q^{m}\geq 1+1$,矛盾,若q>1,左边最小值是q,右边最大值是2,$q\geq 2$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-11-28 01:53
回复 2# hbghlyj

??`m`, `n` 没说不能相等,所以可以令 `m=n=1` 得 `q^2\ge2q` 即 `q\ge2` 吧?反之当 `q\ge2` 时 `q^{m+n}\ge q^m+q^n\iff(q^m-1)(q^n-1)\ge1` 显然成立,所以 `q\ge2` 是充要。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2019-11-28 06:55
回复 3# kuing
哦!已经修改了

Mobile version|Discuz Math Forum

2025-5-31 11:20 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit