Forgot password?
 Register account
View 2602|Reply 18

[函数] 三角函数题征解

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2019-11-29 18:20 |Read mode
Last edited by hbghlyj 2024-10-24 09:03题号标红的我没想出。其他题解法如有错误或繁琐的欢迎您指出。
第一组:
1.$(\sin x+\sec x)^2+(\cos x+\csc x)^2
=1+2\sin x\sec x+2\cos x\csc x+\sec^2 x+\csc^2 x
=1+2\sec x\csc x+\sec^2 x\csc^2x
=(1+\sec x\csc x)^2$
同理$(\sin x-\sec x)^2+(\cos x-\csc x)^2=(1-\sec x\csc x)^2$
2.$\tan A(1-\cot^2B)+\cot A(1-\tan^2B)=0$
$LHS=-\cot A \tan^2B(\cot B-1)(\cot B+1)(\tan A\cot B - 1)(\tan A\cot B + 1)$
$\therefore A=\frac{\pi}{2}+k\pi$或$B=k\pi$或$B=k\frac{\pi}2+\frac{\pi}4$或$A\pm B=k\pi$
3.设$M=\tan A+\sin A,N=\tan A-\sin A$,求证
(1)$\abs{M^2-N^2}=4\sqrt{MN}$
(2)$M^2-N^2=-8 \sin^2(\frac{A}2) \cos^2(\frac{A}2) \csc(\frac{A}2+ \frac{\pi}4)\csc(\frac{A}2-\frac{\pi}4)$
(1)$M^2-N^2=4\tan x\sin x$
$4\sqrt{MN}=4\sqrt{\frac{\sin^2x}{\cos^2x}-\sin^2x}=4\sqrt{1-\cos^2x}\abs{\tan x}=4\abs{\tan x\sin x}$
(2)$\sin(\frac{A}2+ \frac{\pi}4)\sin(\frac{A}2-\frac{\pi}4)=\sin^2{\frac{A}{2}}-\frac12=-\frac{\cos A}2$,$8 \sin^2(\frac{A}2) \cos^2(\frac{A}2) \csc(\frac{A}2+ \frac{\pi}4)\csc(\frac{A}2-\frac{\pi}4)=\frac{2\sin^2A}{-\frac{\cos A}2}=-4\tan x\sin x$
4.已知$\sin x+\cos x=\sqrt2$,求$log_2{\sin x}\cdot log_2{\cos x}$
$x=\frac{\pi}4+2k\pi$,$log_2{\sin x}\cdot log_2{\cos x}$=-1
5.$\cos(\sqrt{1-\sqrt{x^2+5x+7}}+x^2+5x+6)$的值域为
6.已知$n\in \Bbb{N},n\leq 1080,f(n)=\sum_{k=1}^n\sin k°,g(n)=\prod_{k=1}^n\sin k°$,求所有使得f(n)=g(n)的n的值
7.求所有三项等差数列,各项的余弦的平方和为$\frac32$
$\cos^2A+\cos^2(A+B)+\cos^2(A-B)=\frac32$
$\cos^2A+\cos{2B}\cos{2A}=\frac12$
$\cos2A(1+\cos2B)=0$
$A=\frac{\pi}{4}+\frac{k\pi}{2}$或$B=k\pi\pm\frac{\pi}3$
8.$(\cos A+\sin A)(\cos A-\sin A)=\cos 2A$
$(\cos A+\sin A)^2+(\cos A-\sin A)^2=2$
$\therefore (\cos A+\sin A)^4+(\cos A-\sin A)^4=3-\cos4A$
9.$\sin3A\sin^3A+\cos3A\cos^3A=\sin3A\frac{3\sin A-\sin3A}{4}+\cos3A\frac{3\cos A+\cos3A}{4}=\frac{3\cos2A+\cos6A}{4}=\cos^32A$
$\sin3A\sin^3A-\cos3A\cos^3A=\sin3A\frac{3\sin A-\sin3A}{4}-\cos3A\frac{3\cos A+\cos3A}{4}=-\frac{3\cos4A+1}{4}$
$\sin3A\cos^3A+\cos3A\sin^3A=\sin3A\frac{3\cos A+\cos3A}{4}+\cos3A\frac{3\sin A-\sin3A}{4}=\frac{3}{4}\sin4A$
$\sin3A\cos^3A-\cos3A\sin^3A=\sin3A\frac{3\cos A+\cos3A}{4}-\cos3A\frac{3\sin A-\sin3A}{4}=\frac{3\sin2A+\sin6A}{4}=\sin A\cos A(\cos4A+2)$
10.$\tan70°=\tan20°+2\tan40°+4\tan10°$
$2\cot 2x=\frac2{\tan2x}=\frac{1-\tan^2x}{\tan x}=\cot x-\tan x$
$\tan70°=\cot20°=\tan20°+2\cot40°=\tan20°+2\tan40°+4\cot80°$
13.$\frac{\tan(\alpha+\beta-\gamma)}{\tan(\alpha-\beta+\gamma)}=\frac{\tan\gamma}{\tan\beta},\beta\ne\gamma$,证明$\sin2\alpha+\sin2\beta+\sin2\gamma=0$
$\tan\beta\tan(\alpha+\beta-\gamma)-\tan\gamma\tan(\alpha-\beta+\gamma)=\frac12\sin(β - \gamma) (\sin2 α
+ \sin2 β+ \sin2 γ)\sec β\sec γ \sec(α + β - γ) \sec(α - β + γ)$
只需证$\sin\beta\cos\gamma\sin(α + β - γ)\cos(α - β + γ)-\cos\beta\sin\gamma\cos(α + β - γ)\sin(α - β + γ)=\frac12 \sin(β - \gamma)(\sin2 α
+ \sin2 β+ \sin2 γ)$
LHS=$\frac12\sin\beta\cos\gamma(\sin2\alpha+2\sin2(\beta-\gamma))-\frac12\cos\beta\sin\gamma(\sin2\alpha-2\sin2(\beta-\gamma))=\frac12(\sin2\alpha\sin(\beta-\gamma)+\sin2(\beta-\gamma)\sin(\beta+\gamma))=\frac12(\sin2\alpha\sin(\beta-\gamma)+2\sin(\beta-\gamma)\cos(\beta-\gamma)\sin(\beta+\gamma))=\frac12\sin(\beta-\gamma)(\sin2\alpha+2\cos(\beta-\gamma)\sin(\beta+\gamma))=RHS$
16.$f(x)=a\sin x+\sin ax(a\in\Bbb{N*})$的最值
a=4k+1时$f(x)\in[-a-1,a+1]$,当$x=\frac{\pi}2+k\pi$时取得最值
a=2时$f(x)=\sqrt{\frac{1-2\cos2x}2}+\sqrt{1-\cos^22x}\leq\sqrt{2(\frac{1-2\cos2x}2+1-\cos^22x)}\leq\frac{3\sqrt3}2$,当$x=\frac{\pi}3+2k\pi$时取等.$f(x)\in[-\frac{3\sqrt3}2,\frac{3\sqrt3}2]$
a=3时设$g(x)=6x-4x^3$,则$g'(x)=6-12x^2,f(x)\in[-2\sqrt2,2\sqrt2]$
a=4时$f(x)=4\sin x+\sin4x,f'(x)=4\cos x+4\cos4x=2\cos^2(\frac x2) (2 \cos  x - 1) (-2 \cos x+ 2 \cos2 x + 1)$
$x = \pm\frac{3 π}5+2k\pi$时取得最值,f(x)$\in[-\frac52\sqrt{\frac{5 + \sqrt5}2},\frac52\sqrt{\frac{5 + \sqrt5}2}]$
17.$\sin2\alpha\sin(\beta-\gamma)+\sin2\beta\sin(\gamma-\alpha)+\sin2\gamma\sin(\alpha-\beta)=(\sin(\gamma+\beta)+\sin(\gamma+\alpha)+\sin(\alpha+\beta))(\sin(\gamma-\beta)+\sin(\alpha-\gamma)+\sin(\beta-\alpha))$
$RHS=(\sin\beta\cos\gamma+\sin\gamma\cos\alpha+\sin\alpha\cos\beta)^2-(\cos\beta\sin\gamma+\cos\gamma\sin\alpha+\cos\alpha\sin\beta)^2$
$\sin^2\beta\cos^2\gamma-\cos^2\beta\sin^2\gamma=\sin^2\beta-\sin^2\gamma$,平方项和为0,
$RHS=\sum\sin2\gamma(\sin\beta\cos\alpha-\cos\beta\sin\alpha)=LHS$
以$\alpha+\frac{\pi}4,\beta+\frac{\pi}4,\gamma+\frac{\pi}4$代$\alpha,\beta,\gamma$得
$\cos2\alpha\sin(\beta-\gamma)+\cos2\beta\sin(\gamma-\alpha)+\cos2\gamma\sin(\alpha-\beta)=(\cos(\gamma+\beta)+\cos(\gamma+\alpha)+\cos(\alpha+\beta))(\sin(\gamma-\beta)+\sin(\alpha-\gamma)+\sin(\beta-\alpha))$
18.$\sum\sin^3\alpha\sin(\beta-\gamma)=-\sin(\alpha+\beta+\gamma)\prod\sin(\beta-\gamma)$
$\because\sin\alpha\sin(\beta-\gamma)=0$
$\therefore LHS=-\frac14\sum\sin3\alpha\sin(\beta-\gamma)=\frac18(\sum\cos(3\alpha+\beta-\gamma)-\sum\cos(3\alpha-\beta+\gamma))=\frac18(\sum\cos(3\alpha+\beta-\gamma)-\sum\cos(3\gamma-\alpha+\beta))=\frac14\sum\sin(\alpha+\beta+\gamma)\sin2(\gamma-\alpha)=RHS$
以$\alpha+\frac{\pi}2,\beta+\frac{\pi}2,\gamma+\frac{\pi}2$代$\alpha,\beta,\gamma$得
$\sum\cos^3\alpha\sin(\beta-\gamma)=\sin(\alpha+\beta+\gamma)\prod\sin(\beta-\gamma)$
19.$\sum\sin^3\alpha\sin^3(\beta-\gamma)=3\prod\sin \alpha\sin (\beta-\gamma)$
LHS-RHS含因式$\sum\sin \alpha\sin(\beta-\gamma)=0$
20.$2(\cos \beta\cos \gamma-\cos \alpha)(\cos \gamma\cos \alpha-\cos \beta)(\cos \alpha\cos \beta-\cos \gamma)+\sin^2\alpha\sin^2\beta\sin^2\gamma-\sum\sin^2\alpha(\cos \beta\cos \gamma-\cos \alpha)^2=(1-\sum\cos^2\alpha+2\cos\alpha\cos \beta\cos \gamma)$
由伴随矩阵性质,$\begin{vmatrix}a&h&g\\h&b&f\\g&f&c\end{vmatrix}^2=\begin{vmatrix}bc-f^2&fg-ch&fh-bg\\fg-ch&ca-g^2&gh-af\\fg-bg&gh-af&ab-h^2\end{vmatrix}$
令a=b=c=1,$f=\cos\alpha,g=\cos\beta,h=\cos\gamma$即得
21.已知$\cos(y-z)\cos(z-x)\cos(x-y)=\frac14$,求证$1+12\cos2(y-z)\cos2(z-x)\cos2(x-y)=4\cos3(y-z)\cos3(z-x)\cos3(x-y)$
令$\alpha=y-z,\beta=z-x,\gamma=x-y$,则$\alpha+\beta+\gamma=0$,$\cos^2\alpha+\cos^2\beta+\cos^2\gamma-2\cos\alpha\cos\beta\cos\gamma=1$,$\cos^2\alpha+\cos^2\beta+\cos^2\gamma=\frac32$.但$\cos3\alpha\cos3\beta\cos3\gamma=\cos\alpha\cos\beta\cos\gamma(4\cos^2\alpha-3)(4\cos^2\beta-3)(4\cos^2\gamma-3)=\frac14(31-48\sum\cos\beta\cos\gamma),\cos2\alpha\cos2\beta\cos2\gamma=(2\cos^2\alpha-1)(2\cos^2\beta-1)(2\cos^2\gamma-1)=\frac52-4\sum\cos\beta\cos\gamma$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-11-29 22:33
6.已知$n\in \Bbb{N},n\leq 1080,f(n)=\sum_{k=1}^n\sin k°,g(n)=\prod_{k=1}^n\sin k°$,求所有使得f(n)=g(n)的n的值
hbghlyj 发表于 2019-11-29 18:20
n=1 显然成立,而直至 n=179 之前,f(n) 严格递增,g(n) 递减,所以都不可能相等,而到 n=180 起,g(n) 恒为零,而易知 f(n) 为零的 n 为 359, 360, 719, 720, 1079, 1080.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2019-12-4 13:28
Last edited by hbghlyj 2019-12-27 18:41第二组.设$A+B+C=(2k+1)\pi$,
(1)$\sum\tan A\cot B\cot C=\sum\tan A-2\sum\cot A$
$\sum\tan A\cot B\cot C-\sum\tan A=\sum\tan A(\cot B\cot C-1)=\sum\tan A(-\cot A)(\cot B+\cot C)=-2\sum\cot A$
(2)$\sum\cot A=\cot A\cot B\cot C+\csc A\csc B\csc C$
(3)$\sum\sin(B-C)\cos^3A=-\sin(B-C)\sin(C-A)\sin(A-B)$
(4)$\sum(\sin B+\sin C)(\cos C+\cos A)(\cos A+\cos B)=(\sin B+\sin C)(\sin C+\sin A)(\sin A+\sin B)$
(5)$\sum\sin A\cos(A-B)\cos(A-C)=3\sin A\sin B\sin C+\sin 2A\sin 2B\sin 2C$
(6)$\sum\sin2B\sin2C=4(\sin^2Asin^2Bsin^2C+\cos^2A\cos^2B\cos^2C+\cos A\cos B\cos C)$
(7)$\sum\cos2A(\tan B-\tan C)=-2\sin(B-C)\sin(C-A)\sin(A-B)\sec A\sec B\sec C$
(8)$\sum\cos^2A(\sin2B+\sin2C)=2\sin A\sin B\sin C$
$\sum\cos^2A(\sin2B+\sin2C)=\frac12\sum(1+\cos2A)(\sin2B+\sin2C)=\sum\sin2A+\frac12\sum(\cos2A\sin2B+\cos2B\sin2A)=\sum\sin2A-\frac12\sum\sin2C=\frac12\sum\sin2A=2\sin A \sin B\sin C$
(9)$\sum\cos A\cos 3A=(\sum\sin2A)(\frac32+\sum\cos2A)$
(10)$(\sin A+\sin B+\sin C)(-\sin A+\sin B+\sin C)(\sin A-\sin B+\sin C)(\sin A+\sin B-\sin C)=4\sin^2A\sin^2B\sin^2C$
由海伦公式可证。用恒等变形亦可:
$(\sin A+\sin B+\sin C)(-\sin A+\sin B+\sin C)(\sin A-\sin B+\sin C)(\sin A+\sin B-\sin C)=((\sin A+\sin B)^2-\sin^2C)((\sin A-\sin B)^2-\sin^2C)=2\sin A\sin B(1-\cos C)2\sin A\sin B(1+\cos C)=4\sin^2A\sin^2B\sin^2C$
常用的三角形内角恒等式
$\sum\sin A=4\prod\cos\frac{A}2$
$\sum\cos A=4\prod\sin\frac{A}2+1$
$\sin A+\sin B-\cos C=4\sin\frac{A}2\sin\frac{B}2\cos\frac{C}2$
$\cos A+\cos B-\cos C=4\cos\frac{A}2\cos\frac{B}2\sin\frac{C}2-1$
$\sum\sin^2A=2\prod\cos A+2$
$\sin^2A+\sin^2B-\sin^2C=2\prod\sin A$
$\sum\sin2A=4\prod\sin A$
$\sin2A+\sin2B-\sin2C=4\cos A\cos B\sin C$
$\sum\tan A=\prod\tan A$
$\sum\cot A\cot B=1$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2019-12-5 13:40
Last edited by hbghlyj 2019-12-6 00:04f(x)=$\tan(\cos^{-1}x)$,解方程$f^n(x)=x$
f(x)是奇函数,只需考虑x>0情形.
$f(x)=\sqrt{\frac1{x^2}-1}$
f(x)~g(x)=$\frac1x-1$,g(x)不动点为$\frac{-1\pm\sqrt5}2$
$g^n(x)=\frac{(\sqrt5- 1)^n ((\sqrt5- 1) x + 2) + (1 + \sqrt5)^n (-1)^n((\sqrt5+1)x - 2)}{-2 (-1 - \sqrt5)^n x + (\sqrt5- 1)^n (2 x +\sqrt5 + 1) + (-1)^n(\sqrt5 - 1) (1 + \sqrt5)^n}$
$f^n(x)=\sqrt\frac{(\sqrt5- 1)^n ((\sqrt5- 1) x^2 + 2) + (1 + \sqrt5)^n (-1)^n((\sqrt5+1)x^2- 2)}{-2 (-1 - \sqrt5)^n x^2 + (\sqrt5- 1)^n (2 x^2 +\sqrt5 + 1) + (-1)^n(\sqrt5 - 1) (1 + \sqrt5)^n}$
到这里还需要解一个一元二次方程。手机打字打到手抽。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2019-12-5 18:30
Last edited by hbghlyj 2019-12-29 23:46第三组.三角不等式
(1)求k的最小值,使得$(\cos A-\frac15)(\cos B-\frac15)(\cos C-\frac15)\leq k$对任意△ABC均成立
(2)三角形中,求$\csc\frac A2\csc\frac B2(4\sqrt{1+5\csc\frac C2})$的取值范围
(3)$\frac{\tan^2x+\tan^2y}{1+\tan^2x+\tan^2y}=\sin^2x+\sin^2y$,求$\sin x\sin  y$的取值范围
切化弦,$\sin^2x\sin^2y=1-\cos^4x\in[0,1)$,原式当x=0,y为除$\frac{(2k+1)\pi}2$外的任意实数时取最小值,当x$\to\frac{(2k+1)\pi}2,y\to\frac{(2k+1)\pi}2$时取最大值.
(4)在锐角三角形中求$\frac{\sum\frac{\cos^2A}{\cos^2B}}{\sum\cos^2A}$的取值范围
$∵\prod\cos A≤\frac18∴\frac{2\cos^2A}{\cos^2B}+\frac{\cos^2B}{\cos^2C}\geq3\sqrt[3]{\frac{\cos^2A\cos^2A\cos^2B}{\cos^2B\cos^2B\cos^2C}}=\frac{3\cos^2A}{\sqrt[3]{\cos^2A\cos^2B\cos^2C}}≥12\cos^2A$,轮换求和,$\frac{\sum\frac{\cos^2A}{\cos^2B}}{\sum\cos^2A}≥4$,当且仅当$A=B=C=\frac{\pi}3$时取等
当A$\to\frac{\pi}2$时原式$\to\infty$,所以取值范围为[4,∞)
(5)$x,y,z>0,2\prod(1-x)=(1-x-y-z)^2,$求$\frac{\sum\frac{1-x}{1-y}}{1-2xyz}$的取值范围
使用恒等式$x^2+y^2+z^2+2xyz=1$将x换成$-\cos2A$就得到(4).
这样改编应该没问题。机器算出min{((1 - x)/(1 - y) + (1 - y)/(1 - z) + (1 - z)/(1 - x))/(1 - 2 x y z)|x^2 + 2 x y z + y^2 + z^2 = 1 ∧ x>y>z>0}≈4. at (x, y, z)≈(0.5, 0.5, 0.5)
max{((1 - x)/(1 - y) + (1 - y)/(1 - z) + (1 - z)/(1 - x))/(1 - 2 x y z)|x^2 + 2 x y z + y^2 + z^2 = 1 ∧ x>y>z>0}≈36.7174 at (x, y, z)≈(0.972157, 0.234333, 0)
请问这个最大值是怎么回事
(6)x,y,z>0,证明$\sum\frac x{x+\sqrt{(x+y)(x+z)}}≤1$
由齐次性,不妨设$xy+yz+zx=1$,$LHS=\sum\frac 1{1+\sqrt{1+x^{-2}}}(令x=\tan \frac A2)=\sum\frac{\sin\frac A2}{\sin\frac A2+1}=3-\sum\frac1{\sin\frac A2+1}≤3-\frac9{\sum\sin\frac A2+3}≤1$,当且仅当x=y=z时取等
(7)a,b,c,d>0,$\sum\frac{a^2}{a^2+1}=1,$求abcd的取值范围
令$a=\tan A$,其余类推,$A,B,C,D\in(0,\frac{\pi}2),\sum\sin^2 A=1,\sin^2 A+\sin^2 B+\sin^2 C=\cos^2 D≥3\sqrt[3]{\sin^2 A\sin^2 B\sin^2 C}$,轮换相乘得$\prod\tan^2 A≤\frac1{81},\prod\tan A≤\frac1{9}$,当且仅当a=b=c=d=$\sqrt3$时取等
(8)a,b,c>0,abc+a+c=b,求$P=\frac{2}{a^2+1}-\frac{2}{b^2+1}+\frac{3}{c^2+1}$
设$a=\tan x,b=\tan y,c=\tan z,x,y,z\in(0,\frac{\pi}{2})$,则$\tan y=\frac{\tan x+\tan z}{1-\tan x\tan z},y=x+z,P=2\cos^2 x-2\cos^2y+3\cos ^2z=2\sin (2x+z)\sin z-3\sin ^2 z+3≤2\sin z-3\sin ^2 z+3≤\frac{10}{3}$当且仅当$\sin x=\frac1{\sqrt3},\sin z=\frac13,a=\frac{\sqrt2}2,b=\sqrt2,c=\frac{\sqrt2}4$时取等
(9)解不等式min{sinx,cosx}<min{tanx,cotx}
$(k\pi,(k+\frac12)\pi)$作图
(10)任给7个实数存在两个a,b满足$0≤\frac{a-b}{1-ab}≤\frac{\sqrt3}3$
令$a=\tan x,b=\tan y,x,y\in(-\frac{\pi}2,\frac{\pi}2),$则$0≤\tan (x-y)≤\frac{\sqrt3}3,0≤x-y≤\frac{\pi}6$,把$(-\frac{\pi}2,\frac{\pi}2)$等分为6个区间,每个区间长度为$\frac{\pi}6$,由抽屉原理得证
(11)

常用三角形三内角不等式
(1)$\sum\cos A≤\frac32$
$\sum\cos A=2\cos{\frac{A+B}2}\cos{\frac{A-B}2}+1-2\sin^2\frac C2(消去自由变量\cos{\frac{A-B}2})≤2\sin\frac C2+1-2\sin^2\frac C2≤\frac32$
(2)$\prod\cos A≤\frac18$
令$x=\cot A,y=\cot B,z=\cot C$,则$\sum xy=1,\prod\cos A=\frac{xyz}{\sqrt{\prod(1+x^2)}}=\frac{xyz}{\prod(x+y)}≤\frac{xyz}{\prod2\sqrt{xy}}=\frac18$
(3)$\prod\sin\frac A2≤\frac18$
$\prod\sin\frac A2=\frac12(\cos{\frac{A+B}2}-\cos{\frac{A-B}2})\sin\frac C2(消去自由变量\cos{\frac{A-B}2})≤\frac12(1-\sin C)\sin\frac C2≤\frac18$
函数角度上(2)(3)是等价的
(1)可以通过$\sum\cos A=4\prod\sin\frac{A}2+1$导出(3)
上面三个都可用Jensen不等式做

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-12-5 23:19
第二组.设$A+B+C=(2k+1)\pi$,证明
...
(2)$\sum\cot A=\cot A\cot B\cot C+\csc A\csc B\csc C$
hbghlyj 发表于 2019-12-4 13:28
法一:因为
\[\cot A+\cot B=\frac{\cos A}{\sin A}+\frac{\cos B}{\sin B}=\frac{\sin(A+B)}{\sin A\sin B}=\frac{\sin C}{\sin A\sin B},\]所以
\begin{align*}
\sum\cot A&=\frac12\sum\frac{\sin C}{\sin A\sin B}\\
&=\frac{\sin^2A+\sin^2B+\sin^2C}{2\sin A\sin B\sin C}\\
&=\frac{3-(\cos^2A+\cos^2B+\cos^2C)}{2\sin A\sin B\sin C}\\
&=\frac{1+\cos A\cos B\cos C}{\sin A\sin B\sin C}\\
&=\RHS.
\end{align*} 法二:由余弦定理及面积公式有
\[\cot A=\frac{2bc\cos A}{2bc\sin A}=\frac{b^2+c^2-a^2}{4S},\]故
\[\sum\cot A=\frac{a^2+b^2+c^2}{4S}=\frac{\sin^2A+\sin^2B+\sin^2C}{2\sin A\sin B\sin C},\]下同法一。

法三:记 `c` 边上的高为 `h_c`,由几何意义有
\[\cot A+\cot B=\frac c{h_c}=\frac{c^2}{2S},\]下同法二。

PS、理论上法二法三其实都不应该在这里用,因为题目条件是 `A+B+C=(2k+1)\pi`,没说会构成三角形,但是我照用,是因为实际当中经常就是在三角形里面玩,写下来还是有好处的,至少像 `=(a^2+b^2+c^2)/(4S)` 这样的结果也比原等式好看,另外,因为 `\sum\cot A\geqslant\sqrt{3\sum\cot A\cot B}=\sqrt3`,故有 `a^2+b^2+c^2\geqslant4\sqrt3S`,这就是外森比克不等式……

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2019-12-6 12:30
回复 6# kuing
设A+B+C=(2k+1)π,A',B',C'为使得A-A',B-B',C-C'都是2π的倍数的最小正数,则A'+B'+C'=π或3π或5π
若A'+B'+C'=π,用几何意义可证
若A'+B'+C'=3π,分为两类,或者两角A,B<π,第三角C>π,取π-A'+π-B'+2π-C'=π,或者两角A,B>π,第三角C<π,取A'-π+B'-π+C'=π
若A'+B'+C'=5π,2π-A'+2π-B'+2π-C'=π

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2019-12-13 18:40
14.设$\sec\alpha=\cos x,\sec\beta=\cos y,\sec\gamma=\cos z$,则$\cos x=\cos(y\pm z),x\pm y\pm z=2k\pi$,同样适用于后两式
这种做法对于cosx的值域有点问题

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2019-12-24 13:02
回复 5# hbghlyj
怀疑(3)算错了。用wolfram算的取值范围跟这个不一样,但是手工化简了好几遍都是这个结果呢?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-12-24 22:13
第三组.三角不等式
(1)求k的最小值,使得$(\cos A-\frac15)(\cos B-\frac15)(\cos C-\frac15)\leq k$对任意△ABC均成立
hbghlyj 发表于 2019-12-5 18:30
不妨设 `C=\min\{A,B,C\}`,因为
\[\left( \cos A-\frac15 \right)\left( \cos B-\frac15 \right)-\left( \sin\frac C2-\frac15 \right)^2=-2\left( 1-\frac25\sin\frac C2+\cos\frac{A-B}2 \right)\sin^2\frac{A-B}4\leqslant0,\]且 `\cos C\geqslant1/2>1/5`,故
\[\left( \cos A-\frac15 \right)\left( \cos B-\frac15 \right)\left( \cos C-\frac15 \right)\leqslant\left( \sin\frac C2-\frac15 \right)^2\left( \cos C-\frac15 \right),\]又
\[\frac4{125}-\left( \sin\frac C2-\frac15 \right)^2\left( \cos C-\frac15 \right)=\frac2{25}t\left( \left( 25t+\frac{119}8 \right)\left( t-\frac12 \right)^2+\frac18\left( t-\frac32 \right)^2 \right)>0,\]其中 `t=\sin(C/2)`,所以原式 `<4/125`,当 `A=B\to\pi/2`, `C\to0` 时趋向 `4/125`,所以这就是 `k` 的最小值。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2019-12-26 21:42
Last edited by hbghlyj 2019-12-26 22:51嵌入不等式
x,y,z是任意实数,$A+B+C=(2k+1)\pi,x^2+y^2+z^2\geq 2yz\cos A+2zx\cos B
+2xy\cos C$当且仅当$x:y:z=\sin A:\sin B:\sin C$时取等
推论:$pqr>0,\sum p\cos A\leqslant\frac12pqr(\sum\frac1{p^2})$,当且仅当$p:q:r=\csc A:\csc B:\csc C$时取等
(1)$\frac{\cos A+\cos B+\cos C}3≤\frac12≤\sqrt{\frac{cos^2A+\cos^2B+\cos^2C}3}$
令p=q=r得$\cos A+\cos B+\cos C≤\frac32$
$cos^2A+\cos^2B+\cos^2C=1-2\cos A\cos B\cos C≥\frac34$原题第二个不等号不使用$\cos A\cos B\cos C≤\frac18$直接用嵌入不等式能否证
(2)$\cos A\cos B+\cos B\cos C+\cos C\cos A≤\frac12+2\cos A\cos B\cos C$
令p=$\cos B,q=\cos C,r=\cos A$得$\cos A\cos B+\cos B\cos C+\cos C\cos A≤\frac12\cos A\cos B\cos C\sum\frac1{\cos^2A}≤\frac12\sqrt{}$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2019-12-27 13:15
Last edited by hbghlyj 2019-12-29 22:10(1)对任意实数x,$\sum\limits_{i=1}^ka_i\cos ix≥-1$,则$\sum\limits_{i=1}^ka_i≤k$
(2)设$\alpha_i,\beta_i>0(i=1,2\ldots n),\sum\limits_{i=1}^n\alpha_i=\sum\limits_{i=1}^n\beta_i=\pi$,则$\sum\limits_{i=1}^n\cos\alpha_i\cos\beta_i≤\sum\limits_{i=1}^n\cot\alpha_i$
(3)a>0,y≠0,$\sqrt{(a\cos x-y)^2+(a\sin x-\frac{b^2}y)^2}≥\sqrt2\abs b-a$
令$z_1=a(\cos x+i\sin x),z_2=y+i\frac{b^2}y$,利用$\abs{z_1-z_2}≥\abs{z_2}-\abs{z_1}$得LHS≥$\sqrt{y^2+\frac{b^4}{y^2}}-a$≥RHS

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-12-29 15:27
第三组.三角不等式
...
(6)x,y,z>0,证明$\sum\frac x{x+\sqrt{(x+y)(x+z)}}≤1$
由齐次性,不妨设$xy+yz+zx=1$, $LHS=\sum\frac 1{1+\sqrt{1+x^{-2}}}(令x=\tan \frac A2)=\sum\frac{\sin\frac A2}{\sin\frac A2+1}=3-\sum\frac1{\sin\frac A2+1}≤3-\frac9{\sum\sin\frac A2+3}≤1$,当且仅当x=y=z时取等
(7)a,b,c,d>0,$\sum\frac{a^2}{a^2+1}=1,$求abcd的取值范围
令$a=\tan A$,其余类推,$A,B,C,D\in(0,\frac{\pi}2)$, $\sum\sin^2 A=1,\sin^2 A+\sin^2 B+\sin^2 C=\cos^2 D≥3\sqrt[3]{\sin^2 A\sin^2 B\sin^2 C}$,轮换相乘得$\prod\tan^2 A≤\frac1{81},\prod\tan A≤\frac1{9}$,当且仅当a=b=c=d=$\sqrt3$时取等
hbghlyj 发表于 2019-12-5 18:30
这两个其实都无需联系三角。

(6)利用 CS 有 `\sqrt{(x+y)(x+z)}\ge\sqrt{xy}+\sqrt{xz}`,从而 `\displaystyle\frac x{x+\sqrt{(x+y)(x+z)}}\le\frac{\sqrt x}{\sqrt x+\sqrt y+\sqrt z}`。

(7)`\displaystyle\frac1{d^2+1}=\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}\ge3\sqrt[3]{\frac{a^2b^2c^2}{(a^2+1)(b^2+1)(c^2+1)}}`,同理有另外三式,四式相乘得 `abcd\le1/9`。其实完全就是你的证法,可见换元是多余的。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-12-29 15:46
(3)a>0,y≠0,$(a\cos x-y)^2+(a\sin x-\frac{b^2}y)^2≥(\sqrt2\abs b-a)^2$
令...得LHS≥$(a-2\sqrt{y^2+\frac{b^4}{y^2}})^2$RHS  我对于这里最后一个不等号有疑问...$(a-2\sqrt{y^2+\frac{b^4}{y^2}})^2$为什么一定≥$(\sqrt2\abs b-a)^2$,我觉得不能确定它和a的大小
hbghlyj 发表于 2019-12-27 13:15
所以这题缺条件。其实几何意义是很明显的,就是圆与反比例函数的距离,如果两曲线相交,结论自然就不成立,要补上的条件就是确保不相交,这时最后的不等号才会成立。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-12-29 17:13
回复 5# hbghlyj

第三组第(5)题,条件打少一个2,分母 + 应该是 -
最大值的问题说明是机器的问题,显然 x->1,y,z->0 时无穷大。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2019-12-29 21:54
Last edited by hbghlyj 2019-12-29 22:03回复 15# kuing
(5)当x>1就不能三角换元了.请问这时怎么证
回复 14# kuing
《常用不等式》p272 8(2)typo

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2020-1-14 23:23
楼主哪来的这么多密密麻麻的题?看都看不过来,遑论去做!

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-1-15 12:44
回复 17# 其妙
一部分是老师发的训练题,一部分是书上感觉有疑问的,一部分是讲义上的,一部分是贴吧或qq群上的

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-1-15 13:05
楼主哪来的这么多密密麻麻的题?看都看不过来,遑论去做!
其妙 发表于 2020-1-14 23:23
有闲情时进来挑一些有性趣的来撸就是了,我就是这样

Mobile version|Discuz Math Forum

2025-5-31 10:57 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit