Forgot password
 Register account
View 2289|Reply 3

[不等式] 分式和条件最值

[Copy link]

186

Threads

206

Posts

0

Reputation

Show all posts

guanmo1 posted 2019-12-8 22:13 |Read mode
分式和条件最小值.png

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2019-12-9 02:36
若 `n` 为奇数,设 `n=2k+1`,则由 CS 有
\[\text{原式}\geqslant\frac{(n-1)^2}{a_1+2(a_2+a_3+\cdots+a_{n-1})+a_n}\geqslant\frac{(n-1)^2}{2(a_1+a_2+\cdots+a_n)}=2k^2,\]当 `a_1=a_3=a_5=\cdots=a_n=0` 且 `a_2=a_4=a_6=\cdots=a_{n-1}=1/k` 时取等;

若 `n` 为偶数,设 `n=2k`,将原式分成两组再 CS 有
\begin{align*}
\text{原式}&=\left( \frac1{a_1+a_2}+\frac1{a_3+a_4}+\cdots+\frac1{a_{n-1}+a_n} \right)+\left( \frac1{a_2+a_3}+\frac1{a_4+a_5}+\cdots+\frac1{a_{n-2}+a_{n-1}} \right)\\
&\geqslant\frac{k^2}{a_1+a_2+\cdots+a_n}+\frac{(k-1)^2}{a_2+a_3+\cdots+a_{n-1}}\\
&\geqslant k^2+(k-1)^2,
\end{align*}当 `a_1=a_n=0` 且……呃……时间关系睡一觉明天再具体写取等条件,反正我的直觉告诉我它存在

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2019-12-30 23:09
回复 2# kuing

准备存 PDF 时才发现那天睡饱就把补写这个取等的事给忘了……

当 `n=2k` 时取等条件为 `a_i=a_{n+1-i}` 并且:

(1)当 `k=2p+1` 时 `a_1:a_2:\cdots:a_k=0:2p:1:(2p-1):2:(2p-2):\cdots:(p-1):(p+1):p`;

(2)当 `k=2p` 时 `a_1:a_2:\cdots:a_k=0:(2p-1):1:(2p-2):2:(2p-3):\cdots:(p-1):p`。

举两个例子:

`n=10` 时,即 `a_1:a_2:\cdots:a_5=0:4:1:3:2`,再由和为 `1`,得具体取等条件为
\[(a_1,a_2,\ldots,a_{10})=\left( 0,\frac4{20},\frac1{20},\frac3{20},\frac2{20},\frac2{20},\frac3{20},\frac1{20},\frac4{20},0 \right);\]
`n=12` 时,即 `a_1:a_2:\cdots:a_6=0:5:1:4:2:3`,再由和为 `1`,得具体取等条件为
\[(a_1,a_2,\ldots,a_{12})=\left( 0,\frac5{30},\frac1{30},\frac4{30},\frac2{30},\frac3{30},\frac3{30},\frac2{30},\frac4{30},\frac1{30},\frac5{30},0 \right).\]

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2020-1-14 23:20
厉害了!
只想到一种情况,而且还没去注意取等

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:03 GMT+8

Powered by Discuz!

Processed in 0.013407 seconds, 25 queries