Forgot password?
 Register account
View 2009|Reply 8

[不等式] 一道三元不等式

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2019-12-8 23:46 |Read mode
设正数$a,b,c$满足$ab+bc+ca=3$,证明:$\sqrt{\dfrac{a}{a+8bc}}+\sqrt{\dfrac{b}{b+8ca}}+\sqrt{\dfrac{c}{c+8ab}}\geqslant 1$。

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2019-12-10 23:47
回复 1# lemondian
@kuing:求证法

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2019-12-11 09:06
回复 2# lemondian

IMO42不等式题

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2019-12-11 15:45
回复 3# 力工
能不能用琴生做?

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2019-12-11 16:44
回复 4# lemondian

我渣认为如果能琴声,就可以直接切线了。这里有个小于不能转化。

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2019-12-11 21:51
回复 5# 力工
好象可以用切线吧?但我写不好

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-12-11 23:55
提示:
\[\left( \sum\sqrt{\frac a{a+8bc}} \right)^2\sum(a^3+8a^2bc)\geqslant\left( \sum a \right)^3,\]接下来自己来。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2019-12-12 01:29
回复 3# 力工

再我这个外行眼中,两者不太一样:forum.php?mod=viewthread&tid=6283

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2019-12-12 07:32
Last edited by 力工 2019-12-12 07:42回复 8# isee

这里有$abc \leqslant1$,由此可设$mabc=1,m\geqslant1$,再放缩去掉$m$,就是IMO42了。切线不行的。

Mobile version|Discuz Math Forum

2025-5-31 10:42 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit