|
Last edited by hbghlyj 2023-3-16 16:00问题1 试判断下列命题是否正确?
(1)若\(\lim_{n \rightarrow \infty}u_{n} = 0\),则\(\sum_{n = 1}^{\infty}u_{n}\)必定收敛。
(2)设\(\sum_{n = 1}^{\infty}u_{n}\),\(\sum_{n = 1}^{\infty}v_{n}\)是正项级数,\(u_{n} \leq cv_{n}(n = 1,2,\cdots)\),\(c\)为大于零的常数,则\(\sum_{n = 1}^{\infty}u_{n}\),\(\sum_{n = 1}^{\infty}v_{n}\)同敛散。
答:均不正确。
(1)\(\lim_{n \rightarrow \infty}u_{n} = 0\)是级数收敛的必要条件,不能判断\(\sum_{n = 1}^{\infty}u_{n}\)的收敛,但它的逆否命题成立,可以用\(\lim_{n \rightarrow \infty}u_{n} \neq 0\)来判断\(\sum_{n = 1}^{\infty}u_{n}\)的发散,即若\(\lim_{n \rightarrow \infty}u_{n} \neq 0\),则\(\sum_{n = 1}^{\infty}u_{n}\)发散。
(2)反例,考虑\(u_{n} = \frac{1}{n^{2}},v_{n} = \frac{1}{n}\)。
问题2 下列运算是否正确?
若\(\sum_{n = 1}^{\infty}a_{n},\sum_{n = 1}^{\infty}b_{n}\)均收敛,且对一切自然数\(n\)有\(a_{n} \leq c_{n} \leq b_{n}\),证明:\(\sum_{n = 1}^{\infty}c_{n}\)也收敛。
证明:\(\because a_{n} \leq c_{n} \leq b_{n}(n = 1,2,\cdots)\)且\(\sum_{n = 1}^{\infty}a_{n},\sum_{n = 1}^{\infty}b_{n}\)均收敛,由比较判别法知\(\sum_{n = 1}^{\infty}c_{n}\)收敛。
答:不正确。
因为证明中使用了比较判别法,而比较判别法只适用于正项级数,题目中并未指出级数是正项级数,正确方法如下:
证明:由条件\(a_{n} \leq c_{n} \leq b_{n}(n = 1,2,\cdots)\)可得\(b_{n} - a_{n} \geq c_{n} - a_{n} \geq 0\),故\(\sum_{n = 1}^{\infty}{(b_{n}} - a_{n})\)与\(\sum_{n = 1}^{\infty}{(c_{n}} - a_{n})\)均为正项级数。\(\sum_{n = 1}^{\infty}a_{n}\)与\(\sum_{n = 1}^{\infty}b_{n}\)收敛,从而\(\sum_{n = 1}^{\infty}{(b_{n}} - a_{n})\)收敛,由正项级数的比较判别法,\(\sum_{n = 1}^{\infty}{(c_{n}} - a_{n})\)也收敛,而\(c_{n} = \left( c_{n} - a_{n} \right) + a_{n}\),所以\(\sum_{n = 1}^{\infty}c_{n} = \sum_{n = 1}^{\infty}\left\lbrack \left( c_{n} - a_{n} \right) + a_{n} \right\rbrack\)也收敛。
问题3
设\(\sum_{n = 1}^{\infty}a_{n},\sum_{n = 1}^{\infty}b_{n}\)均为正项级数,满足\(\frac{a_{n + 1}}{a_{n}} \leq \frac{b_{n + 1}}{b_{n}}\),(\(n = 1,2,3,\cdots\)),且级数\(\sum_{n = 1}^{\infty}b_{n}\)收敛,证明\(\sum_{n = 1}^{\infty}a_{n}\)收敛。下面证明过程正确吗?
证明:\(\sum_{n = 1}^{\infty}b_{n}\)收敛,\(\therefore\lim_{n \rightarrow \infty}\frac{b_{n + 1}}{b_{n}} < 1\),又\(\because\frac{a_{n + 1}}{a_{n}} \leq \frac{b_{n + 1}}{b_{n}}\),\(\lim_{n \rightarrow \infty}\frac{a_{n + 1}}{a_{n}} < 1\)
由比值判别法知,\(\sum_{n = 1}^{\infty}a_{n}\)收敛。
答:不正确。
因为比值判别法的逆命题不成立,即根据正项级数\(\sum_{n = 1}^{\infty}b_{n}\)收敛,不能推出\(\lim_{n \rightarrow \infty}\frac{b_{n + 1}}{b_{n}}\)存在并且小于1的结论。(例如,\(\sum_{n = 1}^{\infty}\frac{1}{n^{2}}\)收敛,但\(\lim_{n \rightarrow \infty}\frac{b_{n + 1}}{b_{n}} = 1\)),同时由\(\lim_{n \rightarrow \infty}\frac{b_{n + 1}}{b_{n}}\)存在,也不能推出\(\lim_{n \rightarrow \infty}\frac{a_{n + 1}}{a_{n}}\)存在的结论。
正确证明如下:
由\(\frac{a_{n + 1}}{a_{n}} \leq \frac{b_{n + 1}}{b_{n}}\),推出\(\frac{a_{n + 1}}{b_{n + 1}} \leq \frac{a_{n}}{b_{n}} \leq \cdots \leq \frac{a_{1}}{b_{1}}\),于是\(a_{n} \leq \frac{a_{1}}{b_{1}}b_{n}\),\(n = 1,2,\cdots\)
又\(\sum_{n = 1}^{\infty}b_{n}\)收敛,根据正项级数的比较判别法知\(\sum_{n = 1}^{\infty}a_{n}\)收敛。
问题4
幂级数\(\sum_{n = 0}^{\infty}a_{n}\left( x - x_{0} \right)^{n}\)的收敛域具有什么特点?
答:1.幂级数的收敛域不是空集,至少\(x_{0}\)为收敛点。
2.幂级数的收敛域是以\(x_{0}\)为中心的对称开区间加收敛的端点,区间端点为\(x_{0} - r,x_{0} + r\),收敛域可能是闭区间,开区间或半开区间,也可能是实数域\(R\)(收敛半径\(r = + \infty\))或孤立点\(\left\{ x_{0} \right\}\)。
3.由阿贝尔定理,有若幂级数在\(x = c\)处收敛,则在\(\left| x - x_{0} \right| < c\)即\(\left( x_{0} - c,x_{0} + c \right)\)内必绝对收敛,而若在\(x = a\)处发散,则在\(\left\lbrack x_{0} - a,x_{0} + a \right\rbrack\)之外必发散。
问题5
设函数\(f(x)\)在\(x_{0}\)点的某一邻域内具有任意阶导数,试问\(f(x)\)是否总能在\(x_{0}\)点展开为泰勒级数?
答:首先必须明确两个概念:
(1)\(f(x)\)在\(x_{0}\)点的泰勒级数是指幂级数\(\sum_{n = 0}^{\infty}\frac{1}{n!}f^{(n)}(x_{0})(x - x_{0})^{n}\);
(2)\(f(x)\)在\(x_{0}\)点能展开为泰勒级数是指存在\(x_{0}\)的某个邻域\(U(x_{0})\),
总有\(f(x) = \sum_{n = 0}^{\infty}\frac{1}{n!}f^{(n)}(x_{0})(x - x_{0})^{n}\),
\(x \in U(x_{0})\)
即所展开成的级数必须收敛于\(f(x)\)。
以上是二个不同的概念,事实上只要\(f(x)\)在\(x_{0}\)点有任意阶导数,就可以写出泰勒级数,但根据收敛定理知,\(f(x)\)在\(\cup (x_{0})\)内收敛于\(f(x)\)的充分必要条件是:在\(U(x_{0})\)内,\(f(x)\)的泰勒公式的余项\(R_{n}(x) \rightarrow 0(n \rightarrow \infty)\),若没有\(\lim_{n \rightarrow \infty}R_{n}(x) = 0\)的条件,\(f(x)\)在\(x_{0}\)点就不一定能展开为泰勒级数。
例如 \(f(x) = \left\{ \begin{matrix}
e^{- \frac{1}{x^{2}}}, & \text{当}x \neq 0\text{时} \\
0, & \text{当}x = 0\text{时} \\
\end{matrix} \right.\ \) 在\(x = 0\)点各阶导数都存在,且等于零,事实上
\[f^{'}(0) = \lim_{x \rightarrow 0}\frac{f(x) - f(0)}{x} = \lim_{x \rightarrow 0}\frac{e^{- \frac{1}{x^{2}}} - 0}{x}\lim_{t \rightarrow + \infty}\frac{\pm \sqrt{t}}{e^{t}} = \lim_{t \rightarrow + \infty}\frac{\pm 1}{2\sqrt{t}e^{t}} = 0\]
\[f^{'}(x) = \frac{2}{x^{3}}e^{- \frac{1}{x^{2}}},(x \neq 0)\]
\(\lim_{t \rightarrow + \infty}\frac{2t^{2}}{e^{t}} = 0\)
由归纳法(略),得\(f^{(n)}(0) = 0\) \((n = 3,4,\cdots)\)
由于\(f^{(n)}(0) = 0(n = 1,2,\cdots)\),因此\(f(x)\)在\(x = 0\)点的泰勒级数为\(\sum_{n - 0}^{\infty}\frac{0}{n!}x^{n}\),其和函数为\(S(x) = 0,x \in ( - \infty, + \infty)\)。说明\(f(x)\)在\(x_{0} = 0\)点的泰勒级数在邻域\(U(0)\)内不收敛于\(f(x)\),因此,\(f(x)\)在\(x_{0} = 0\)点不能展开为幂级数。
问题6 怎样用间接法将函数展开为幂级数?
答:将\(f(x)\)展开为\(x\)的幂级数指幂级数的形式为\(\sum_{n = 0}^{\infty}a_{n}x^{n}\),因此,展开时常借助于马克劳林级数\(\sum_{n = 0}^{\infty}\frac{f^{(n)}(0)}{n!}x^{n}\),而将\(f(x)\)展开为\((x - x_{0})\)的幂级数所指的幂级数形式为\(\sum_{n = 0}^{\infty}a_{n}(x - x_{0})^{n}\),故而常常借助于泰勒级数\(\sum_{n = 0}^{\infty}\frac{f^{(n)}(x_{0})}{n!}(x - x_{0})^{n}\)。
间接展开法是通过变形将函数化为适当的形式,利用已知的展开式来完成的。
1.\(f(x)\)是有理分式,可利用展开式展开:
\[\frac{1}{1 - x} = 1 + x + x^{2} + \cdots + x^{n} + \cdots = \sum_{n = 0}^{\infty}x^{n},x \in ( - 1,1)\]
例1 将\(f(x) = \frac{1}{1 - x^{2}}\)展开为\(x\)的幂级数。
解:可利用变量变换,令\(t = x^{2}\),得
\(\frac{1}{1 - x^{2}} = \frac{1}{1 - t} = 1 + t + t^{2} + \cdots + t^{n} + \cdots = 1 + x^{2} + x^{4} + \cdots + x^{2n} + \cdots = \sum_{n = 0}^{\infty}{x^{2n},x \in ( - 1,1)}\)或\(\frac{1}{1 - x^{2}} = \frac{1}{1 - \left( x^{2} \right)} = \sum_{n = 0}^{\infty}\left( x^{2} \right)^{n} = \sum_{n = 0}^{\infty}x^{2n},x \in ( - 1,1)\)
也可将\(f(x) = \frac{1}{1 - x^{2}}\)分解为
\(f(x) = \frac{1}{2}\left( \frac{1}{1 - x} + \frac{1}{1 + x} \right)\)
\(\because\)
\(\frac{1}{1 + x} = \frac{1}{1 - ( - x)} = 1 + ( - x) + ( - x)^{2} + \cdots + ( - x)^{n} + \cdots\)
\[= 1 - x + x^{2} + \cdots + ( - 1)^{n}x^{n} + \cdots = \sum_{n = 0}^{\infty}{( - 1)^{n}}x^{n},x \in ( - 1,1)\]
\(\therefore\)
\(f(x) = \frac{1}{2}\left\lbrack \sum_{n = 0}^{\infty}x^{n} + \sum_{n = 0}^{\infty}{( - 1)^{n}x^{n}} \right\rbrack = \sum_{n = 0}^{\infty}x^{2n},x \in ( - 1,1)\)。
例2
将\(f(x) = \frac{1}{x^{2} + 2x - 3}\)分别展开为\(x\)的幂级数和\(x - 1\)的幂级数。
解:将\(f(x)\)化为部分分式之和:
\(f(x) = \frac{1}{(x - 1)(x + 3)} = - \frac{1}{4}\left( \frac{1}{1 - x} + \frac{1}{3 + x} \right)\)
(1)展开为\(x\)的幂级数
\(\because\)
\(\frac{1}{1 - x} = \sum_{n = 0}^{\infty}x^{n},x \in ( - 1,1)\)
\(\frac{1}{3 + x} = \frac{1}{3}\frac{1}{1 + \frac{x}{3}} = \frac{1}{3}\sum_{n = 0}^{\infty}( - 1)^{n}\left( \frac{x}{3} \right)^{n} = \sum_{n = 0}^{\infty}\frac{( - 1)^{n}}{3^{n + 1}}x^{n},x \in ( - 3,3)\)
\(\therefore\)
\(f(x) = - \frac{1}{4}\sum_{n = 0}^{\infty}\left\lbrack 1 + \frac{( - 1)^{n}}{3^{n + 1}} \right\rbrack x^{n},x \in ( - 1,1)\)
(2)展开为\(x - 1\)的幂级数
先将\(f(x)\)化为如下形式:
\[f(x) = - \frac{1}{4}\left( \frac{1}{1 - x} + \frac{1}{3 + x} \right) = - \frac{1}{4}\left\lbrack \frac{1}{2 - (x - 1)} + \frac{1}{4 + (x - 1)} \right\rbrack\]
\(\because\)
\(\frac{1}{2 - (x - 1)} = \frac{1}{2}\frac{1}{1 - \frac{x - 1}{2}} = \frac{1}{2}{\sum_{n = 0}^{\infty}\left( \frac{x - 1}{2} \right)}^{n} = \sum_{n = 0}^{\infty}\frac{1}{2^{n + 1}}(x - 1)^{n}\),\(x \in ( - 1,3)\)
(由\(- 1 < \frac{x - 1}{2} < 1\),得\(- 1 < x < 3\))
\(\frac{1}{4 + (x - 1)} = \frac{1}{4}\frac{1}{1 + \frac{x - 1}{4}} = \frac{1}{4}{\sum_{n = 0}^{\infty}( - 1)}^{n}\left( \frac{x - 1}{4} \right)^{n} = \sum_{n = 0}^{\infty}\frac{( - 1)^{n}}{4^{n + 1}}(x - 1)^{n}\),\(x \in ( - 3,5)\)
\(\therefore\)
\(f(x) = - \frac{1}{4}\sum_{n = 0}^{\infty}\left\lbrack \frac{1}{2^{n + 1}} + \frac{( - 1)^{n}}{4^{n + 1}} \right\rbrack(x - 1)^{n}\),\(x \in ( - 1,3)\)。
对于\(f(x) = \frac{cx + d}{x^{2} + px + q}\)(\(x^{2} + px + q\)为质因式,在实数范围内不能再分解因式),一般应用直接展开法或待定系数法,但对一些特殊情况,也可用间接法展开,例如
\(f(x) = \frac{1}{x^{2} + x + 1} = \frac{1 - x}{1 - x^{3}} = (1 - x)\sum_{n = 0}^{\infty}x^{3n}\)
\(= \sum_{n = 0}^{\infty}x^{3n} - \sum_{n = 0}^{\infty}x^{3n + 1} = \sum_{n = 0}^{\infty}\left( x^{3n} - x^{3n + 1} \right)\)
\(x \in ( - 1,1)\)
例3 将\(f(x) = \frac{1}{(1 - x)^{2}}\)展开为\(x\)的幂级数。
解:由于\(x \in ( - 1,1)\)时,有
\(\int_{0}^{x}\frac{\text{dt}}{(t - 1)^{2}} = - \frac{1}{x - 1} - 1 = \frac{1}{1 - x} - 1 = x + x^{2} + \cdots + x^{n} + \cdots = \sum_{n = 0}^{\infty}x^{n}\)
再求导,利用幂级数逐项求导性质,得
\(\frac{1}{(x - 1)^{2}} = 1 + 2x + 3x^{2} + \cdots + nx^{n - 1} + \cdots = \sum_{n = 1}^{\infty}{nx^{n - 1}}\),\(x \in ( - 1,1)\)
另解 如下方法更为简单:
\(f(x) = \left( \frac{1}{1 - x} \right)^{'} = \left( \sum_{n = 0}^{\infty}x^{n} \right)^{'} = \sum_{n = 1}^{\infty}x^{n - 1}\),
\(x \in ( - 1,1)\)
2.\(f(x)\)是无理函数,通常转化为\((1 + x)^{\alpha}\),再求其展开式
例如
\(f(x) = \frac{x}{\sqrt{1 + x^{2}}} = x\left( 1 + x^{2} \right)^{- \frac{1}{2}}\)
利用
\((1 + x)^{m} = 1 + mx + \frac{m(m - 1)}{2}x^{2} + \cdots + \frac{m(m - 1)\cdots(m - n + 1)}{n!}x^{n} + \cdots\)
(\(- 1 < x < 1\))
展开为\(x\)的幂级数。
3.\(f(x)\)是超越函数,除了注意函数变形为已知展开式的形式外,应特别注意,如果\(f(x)\)的导数\(f^{'}(x)\)﹑积分\(\int_{0}^{x}{f(t)dt}\)的展开式为已知,则通过逐项积分和求导的方法把求\(f(x)\)的展开式转化为求\(f^{'}(x)\)或\(\int_{0}^{x}{f(t)dt}\)的展开式。例如
\(\left\lbrack \ln (1 + x) \right\rbrack^{'} = \frac{1}{1 + x}\),\(\left( \arctan x \right)^{'} = \frac{1}{1 + x^{2}}\),\(\frac{2}{(1 - x)^{3}} = \left( \frac{1}{1 - x} \right)^{''}\)。
\(\ln (1 + x)\)与\(\arctan x\)的展开都可通过对其导函数\(\frac{1}{1 + x}\)、\(\frac{1}{1 + x^{2}}\)和\(\frac{1}{1 - x}\)的展开再逐项积分或逐项求导来完成。
例.将下列函数展开为\(x\)的幂级数:
(1)\(f(x) = a^{x}\) \((a > 0)\) (2)\(g(x) = x\arctan x\)
解:(1)
因为\(e^{x} = 1 + x + \frac{x^{2}}{2!} + \cdots + \frac{x^{n}}{n!} + \cdots,x \in ( - \infty, + \infty)\)
而
\(a^{x} = e^{\ln a^{x}} = e^{x\ln a}\),所以在上面展开式中,以\(x\ln a\)代\(x\)便得
\(a^{x} = 1 + x\ln a + \frac{\left( x\ln a \right)^{2}}{2!} + \cdots + \frac{\left( x\ln a \right)^{n}}{n!} + \cdots\)
\(= 1 +\ln a \cdot x + \frac{\left( \ln a \right)^{2}}{2!}x^{2} + \cdots + \frac{\left( \ln a \right)^{n}}{n!}x^{n} + \cdots = \sum_{n = 0}^{\infty}\frac{\left(\ln a \right)^{n}}{n!}x^{n}\),
\(x \in ( - \infty, + \infty)\)
(2) \(\because\)
\(\left( \arctan x \right)^{'} = \frac{1}{1 + x^{2}} = \sum_{n = 0}^{\infty}{( - 1)^{n}}x^{2n}\),
\(x \in ( - 1,1)\)
积分
\(\arctan x = \int_{0}^{x}\frac{1}{1 + t^{2}}dt = \sum_{n = 0}^{\infty}{\int_{0}^{x}{( - 1)^{n}t^{2n}\text{dt}}} = \sum_{n = 0}^{\infty}\frac{( - 1)^{n}}{2n + 1}x^{2n + 1}\),\(x \in \lbrack - 1,1\rbrack\)
当\(x = \pm 1\)时,\(\sum_{n = 0}^{\infty}\frac{( - 1)^{n}}{2n + 1}( \pm 1)\)为收敛的交错级数。
\(\therefore g(x) = x\arctan x = x\sum_{n = 0}^{\infty}\frac{( - 1)^{n}}{2n + 1}x^{2n + 1} = \sum_{n = 1}^{\infty}\frac{( - 1)^{n - 1}}{2n - 1}x^{2n}\),\(x \in \lbrack - 1,1\rbrack\)
|
|