|
Author |
hbghlyj
Posted 2019-12-22 00:31
Last edited by hbghlyj 2019-12-22 10:291.LHS:$(\sum\frac x{1-yz})^2≥(\sum x)^2≥\sum x^2=1$当且仅当1,0,0时取等
RHS:法①$\sum\frac x{1-yz}=\sum\frac {2x}{1+x^2+(y-z)^2}\leq \sum\frac {2x}{1+x^2}\leq \sqrt3\sum\frac{\frac13+x^2}{1+x^2}=\sqrt3(3-\frac23\sum\frac1{1+x^2})\leq\frac32\sqrt3$当且仅当$\frac{\sqrt3}3,\frac{\sqrt3}3,\frac{\sqrt3}3$时取等
法②三角换元$yz\leq\frac{y^2+z^2}2=\frac{1-x^2}2,\sum\frac x{1-yz}≤\sum\frac {2x}{1+x^2},2x\leq x^2+1=:\sin\alpha(\alpha\in(0,\pi])$,已知化为$\sum\tan^2{\frac \alpha2}=1$,欲证$\sum\sin\alpha\leq\frac{3\sqrt3}2$
又$\frac \alpha2\in(0,\frac\pi2]$,由Jensen不等式,$\tan\frac{\alpha +\beta+\gamma}6≤\frac{\sqrt3}3,\therefore\alpha +\beta+\gamma=\pi$,由Jensen不等式,$\sum\sin\alpha\leq\frac{3\sqrt3}2$ |
|