|
Author |
longma
Posted 2019-12-25 08:23
Last edited by hbghlyj 2025-4-6 04:36由 $\left\{\begin{array}{l}M \geq|c| \\ M \geq|16+4 b+c| \\ M \geq\left|c-\frac{b^2}{4}\right|\end{array}\right.$ 可得 3 种情况:
(1)$\left\{\begin{aligned}
2 M \geq|-2 c| \\
M \geq|16+4 b+c| \\
M \geq\left|c-\frac{b^2}{4}\right|
\end{aligned} \right.$
$\begin{aligned} \Rightarrow 4 M \geq|-2 c|+|16+4 b+c|+\left|c-\frac{b^2}{4}\right| & \geq\left|(-2 c)+(16+4 b+c)+\left(c-\frac{b^2}{4}\right) \right\rvert\, \\ & =\left|16+4 b-\frac{b^2}{4}\right|=\frac{1}{4}\left|b^2-16 b-64\right| \\ & =\frac{1}{4}\left|(b-8)^2-128\right| \geq 0\end{aligned}$
此时 $M \geq 0$
(2)$\left\{\begin{aligned}M \geq|c| \\ 2 M \geq|-32-8 b-2 c| \\ M \geq\left|c-\frac{b^2}{4}\right|\end{aligned}\right.$
$\begin{aligned} \Rightarrow 4 M \geq|c|+|-32-8 b-2 c|+\left|c-\frac{b^2}{4}\right| & \geq\left|c+(-32-8 b-2 c)+\left(c-\frac{b^2}{4}\right)\right| \\ & =\left|-\frac{b^2}{4}-8 b-32\right|=\frac{1}{4}\left|b^2+32 b+128\right| \\ & =\frac{1}{4}\left|(b+16)^2-128\right| \geq 0\end{aligned}$
此时 $M \geq 0$
(3)$\left\{\begin{aligned}M \geq|c| \\ M \geq|16+4 b+c| \\ 2 M \geq\left|\frac{b^2}{2}-2 c\right|\end{aligned}\right.$
$\begin{aligned} \Rightarrow 4 M \geq|c|+|16+4 b+c|+\left|\frac{b^2}{2}-2 c\right| & \geq\left|c+(16+4 b+c)+\left(\frac{b^2}{2}-2 c\right)\right| \\ & =\left|\frac{b^2}{2}+4 b+16\right|=\frac{1}{2}\left|b^2+8 b+32\right| \\ & =\frac{1}{2}\left|(b+4)^2+16\right| \geq 8\end{aligned}$
此时 $M \geq 2$
请问,为什么(1)(2)两种情况,不可以。 |
|