Forgot password?
 Register account
View 1877|Reply 6

[不等式] 请教一道不等式证明题

[Copy link]

31

Threads

42

Posts

400

Credits

Credits
400

Show all posts

longma Posted 2019-12-24 15:45 |Read mode
Last edited by hbghlyj 2025-4-6 04:17已知 $\left\{\begin{array}{l}M \geq|c| \\ M \geq|16+4 b+c| \\ M \geq\left|c-\frac{b^2}{4}\right|\end{array}\right.,(b, c \inR) \text {, 证明: } M \geq 2 \text {. }$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-12-24 15:48
原题是什么?

31

Threads

42

Posts

400

Credits

Credits
400

Show all posts

 Author| longma Posted 2019-12-24 15:55
Last edited by hbghlyj 2025-4-6 04:05酷版,原题是这样的:
已知 $b, c \inR$ ,若 $\left|x^2+b x+c\right| \leq M$ 对任意的 $x \in[0,4]$ 恒成立,则( )
A.$M$ 的最小值为 1
B.$M$ 的最小值为 2
C.$M$ 的最小值为 4
D.$M$ 的最小值为 8

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-12-24 16:01
回复 3# longma

那不就是最常规的取点类型么……
令 `f(x)=x^2+bx+c`,则 `4M\geqslant |f(0)|+2|f(2)|+|f(4)|\geqslant |f(0)-2f(2)+f(4)|=8`。

31

Threads

42

Posts

400

Credits

Credits
400

Show all posts

 Author| longma Posted 2019-12-24 16:03
回复 4# kuing

酷版,这有什么原理吗?

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2019-12-24 19:10
这样的东西就是要你多刷题背题。没有刷过你就倒霉!

31

Threads

42

Posts

400

Credits

Credits
400

Show all posts

 Author| longma Posted 2019-12-25 08:23
Last edited by hbghlyj 2025-4-6 04:36由 $\left\{\begin{array}{l}M \geq|c| \\ M \geq|16+4 b+c| \\ M \geq\left|c-\frac{b^2}{4}\right|\end{array}\right.$ 可得 3 种情况:
(1)$\left\{\begin{aligned}
2 M \geq|-2 c| \\
M \geq|16+4 b+c|  \\
M \geq\left|c-\frac{b^2}{4}\right|
\end{aligned} \right.$
$\begin{aligned} \Rightarrow 4 M \geq|-2 c|+|16+4 b+c|+\left|c-\frac{b^2}{4}\right| & \geq\left|(-2 c)+(16+4 b+c)+\left(c-\frac{b^2}{4}\right) \right\rvert\, \\ & =\left|16+4 b-\frac{b^2}{4}\right|=\frac{1}{4}\left|b^2-16 b-64\right| \\ & =\frac{1}{4}\left|(b-8)^2-128\right| \geq 0\end{aligned}$
此时 $M \geq 0$

(2)$\left\{\begin{aligned}M \geq|c| \\ 2 M \geq|-32-8 b-2 c| \\ M \geq\left|c-\frac{b^2}{4}\right|\end{aligned}\right.$
$\begin{aligned} \Rightarrow 4 M \geq|c|+|-32-8 b-2 c|+\left|c-\frac{b^2}{4}\right| & \geq\left|c+(-32-8 b-2 c)+\left(c-\frac{b^2}{4}\right)\right| \\ & =\left|-\frac{b^2}{4}-8 b-32\right|=\frac{1}{4}\left|b^2+32 b+128\right| \\ & =\frac{1}{4}\left|(b+16)^2-128\right| \geq 0\end{aligned}$
此时 $M \geq 0$

(3)$\left\{\begin{aligned}M \geq|c| \\ M \geq|16+4 b+c| \\ 2 M \geq\left|\frac{b^2}{2}-2 c\right|\end{aligned}\right.$
$\begin{aligned} \Rightarrow 4 M \geq|c|+|16+4 b+c|+\left|\frac{b^2}{2}-2 c\right| & \geq\left|c+(16+4 b+c)+\left(\frac{b^2}{2}-2 c\right)\right| \\ & =\left|\frac{b^2}{2}+4 b+16\right|=\frac{1}{2}\left|b^2+8 b+32\right| \\ & =\frac{1}{2}\left|(b+4)^2+16\right| \geq 8\end{aligned}$
此时 $M \geq 2$

请问,为什么(1)(2)两种情况,不可以。

Mobile version|Discuz Math Forum

2025-5-31 10:48 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit