Forgot password?
 Register account
View 1664|Reply 6

[不等式] 这样求最佳常数,对吗?

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-1-2 18:33 |Read mode
Last edited by hbghlyj 2020-1-3 22:03x,y,z为三角形的三边,试确定最小常数k,使$S=(k(xy+yz+zx)-x^2-y^2-z^2)(\frac1{x^2}+\frac1{y^2}+\frac1{z^2})$有最小值
用wolfram算出1.62021<k<1.62022
令x=y=z,S=9(k-1),由$(k(xy+yz+zx)-x^2-y^2-z^2)(\frac1{x^2}+\frac1{y^2}+\frac1{z^2})≥9(k-1)$解出$k≥\frac{(x^2+y^2+z^2)(\frac1{x^2}+\frac1{y^2}+\frac1{z^2})-9}{(xy+yz+zx)(\frac1{x^2}+\frac1{y^2}+\frac1{z^2})-9}$,只需求右边的最大值,然而用wolfram算出右边没有极大值,有极小值1.5
哪里错了?

17

Threads

93

Posts

1353

Credits

Credits
1353

Show all posts

yao4015 Posted 2020-1-3 13:31
回复 1# hbghlyj

明显你的函数$S$ 对任意的$k$都不会有最小值的,因为可以取到负无穷

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-1-3 22:02
Last edited by hbghlyj 2020-1-3 22:09回复 2# yao4015
当k=2时$S=(2(xy+yz+zx)-x^2-y^2-z^2)(\frac1{x^2}+\frac1{y^2}+\frac1{z^2})$,以y+z,z+x,x+y代x,y,z得$S=(xy+yz+zx)(\sum\frac1{(x+y)^2})≥\frac94$是熟知的.此时条件为x,y,z>0.

17

Threads

93

Posts

1353

Credits

Credits
1353

Show all posts

yao4015 Posted 2020-1-3 23:50
回复 3# hbghlyj

题目修改了?还是我看错了?下午$x,y,z$还是正实数,现在是三角形三边。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-1-4 13:11
回复 4# yao4015
这回是真的打错了。x,y,z>0是我从上面的题复制的。没注意这题的条件。最近我发的三角函数那帖也改了好多打字错误。请谅解...

29

Threads

53

Posts

675

Credits

Credits
675

Show all posts

wanhuihua Posted 2020-1-4 19:59
若k<2 ,令x=y=1,z趋于0
S趋于(k-2)(2+1/z^2)  趋于负无穷 所以最小常熟就是2

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-1-4 22:37
Last edited by hbghlyj 2020-1-5 07:50机器可能算的是极小值。即
x,y,z为三角形的三边,试确定最小常数k,使S有极小值

Mobile version|Discuz Math Forum

2025-5-31 10:45 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit