Forgot password?
 Register account
View 1521|Reply 3

[不等式] 三道求最小值题

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2020-1-5 20:35 |Read mode
1.若正数$a,b$满足$a+b=1$,求$\dfrac{A}{a^n}+\dfrac{B}{b^n}(A>0,B>0,n\geqslant1,n\inN^*)$的最小值。
2.若正数$a,b$满足$pa+qb=d$,求$\dfrac{A}{a^n}+\dfrac{B}{b^n}(p>0,q>0,d>0,A>0,B>0,n\geqslant1,n\inN^*)$的最小值。
3.若正数$a,b$满足$\dfrac{A}{a}+\dfrac{B}{b}=d$,求$pa^n+qb^n(p>0,q>0,d>0,A>0,B>0,n\geqslant1,n\inN^*)$的最小值。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-1-5 21:10
2、3换元后是一样的。

一句话概括:权方和(或 holder)通杀,不解释。

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2020-1-6 19:08
Last edited by lemondian 2020-1-6 19:18@kuing:答案是不是这样:
2.$\dfrac{(\sqrt[n+1]{p^nA}+\sqrt[n+1]{q^nB})^{n+1}}{d^n}$;
3.$\dfrac{(\sqrt[n+1]{pA^n}+\sqrt[n+1]{qB^n})^{n+1}}{d^n}$

别人告诉我是这个:题2:$\dfrac{(p \sqrt[n+1]{A}+q \sqrt[n+1]{B})^{n+1}}{d^n}$;
而我算出来是上面的。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-1-7 16:31
你对

Mobile version|Discuz Math Forum

2025-5-31 10:55 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit