Forgot password
 Register account
View 1672|Reply 3

[不等式] 求证四元不等式

[Copy link]

422

Threads

911

Posts

0

Reputation

Show all posts

lemondian posted 2020-1-23 20:28 |Read mode
Last edited by lemondian 2020-2-3 13:34已知正实数$a,b,c,d$满足$abcd=1$,求证:$\dfrac{a}{a^3+3}+\dfrac{b}{b^3+3}+\dfrac{c}{c^3+3}+\dfrac{d}{d^3+3}\leqslant 1$。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2020-1-25 02:17
新年快乐第一撸,撸道简单题

由均值有
\[\frac a{a^3+3}\leqslant\frac a{3a+1}=\frac13\left( 1-\frac1{3a+1} \right),\]可见只需证
\[\frac1{3a+1}+\frac1{3b+1}+\frac1{3c+1}+\frac1{3d+1}\geqslant1,\]令 `a=xyz/w^3` 等,则由 CS 有
\[\sum\frac1{3a+1}=\sum\frac{w^4}{3xyzw+w^4}\geqslant\frac{(w^2+x^2+y^2+z^2)^2}{12xyzw+w^4+x^4+y^4+z^4},\] 故只需证
\[(w^2+x^2+y^2+z^2)^2\geqslant12xyzw+w^4+x^4+y^4+z^4,\]此乃显然。

281

Threads

550

Posts

2

Reputation

Show all posts

力工 posted 2020-1-25 10:31
新年快乐 !

422

Threads

911

Posts

0

Reputation

Show all posts

original poster lemondian posted 2020-1-25 12:58
回复 2# kuing
新年快乐 !
谢谢!

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:24 GMT+8

Powered by Discuz!

Processed in 0.014861 seconds, 23 queries