Forgot password?
 Register account
View 1659|Reply 3

[不等式] 求证四元不等式

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2020-1-23 20:28 |Read mode
Last edited by lemondian 2020-2-3 13:34已知正实数$a,b,c,d$满足$abcd=1$,求证:$\dfrac{a}{a^3+3}+\dfrac{b}{b^3+3}+\dfrac{c}{c^3+3}+\dfrac{d}{d^3+3}\leqslant 1$。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-1-25 02:17
新年快乐第一撸,撸道简单题

由均值有
\[\frac a{a^3+3}\leqslant\frac a{3a+1}=\frac13\left( 1-\frac1{3a+1} \right),\]可见只需证
\[\frac1{3a+1}+\frac1{3b+1}+\frac1{3c+1}+\frac1{3d+1}\geqslant1,\]令 `a=xyz/w^3` 等,则由 CS 有
\[\sum\frac1{3a+1}=\sum\frac{w^4}{3xyzw+w^4}\geqslant\frac{(w^2+x^2+y^2+z^2)^2}{12xyzw+w^4+x^4+y^4+z^4},\] 故只需证
\[(w^2+x^2+y^2+z^2)^2\geqslant12xyzw+w^4+x^4+y^4+z^4,\]此乃显然。

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2020-1-25 10:31
新年快乐 !

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2020-1-25 12:58
回复 2# kuing
新年快乐 !
谢谢!

Mobile version|Discuz Math Forum

2025-5-31 11:21 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit