Forgot password?
 Register account
View 1715|Reply 2

[不等式] 求$\triangle ABC$的面积的最大值

[Copy link]

414

Threads

905

Posts

110K

Credits

Credits
11001

Show all posts

lemondian Posted 2020-1-23 23:56 |Read mode
设$\triangle ABC$的三边分别为$a,b,c$,且$2a+7b+11c=120$,求$\triangle ABC$的面积的最大值。

3158

Threads

7924

Posts

610K

Credits

Credits
64218
QQ

Show all posts

hbghlyj Posted 2020-1-24 12:29
Last edited by hbghlyj 2021-8-6 08:47a=y+z,b=z+x,c=x+y,x,y,z$\in\mathbf R^+$
条件化为$18 x + 13 y + 9 z=120$,
由均值不等式\[5x \cdot \frac{{10}}{3}y \cdot 2z \cdot (x + y + z) \le {\left( {\frac{{6x + \frac{{13}}{3}y + 3z}}{4}} \right)^4} = {10^4}\]\[xyz(x + y + z) \le 300\]\[S=\sqrt{xyz(x+y+z)}\le 10\sqrt3\]
当且仅当x=2,y=3,z=5,a=8,b=7,c=5时取等

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2021-8-3 22:36
回复 2# hbghlyj

这个代换似乎就是来破此题的,厉害厉害。

多问一句,如果不用这个代换,又如何求面积最大值?

Mobile version|Discuz Math Forum

2025-6-6 10:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit